File size: 6,123 Bytes
5b8a14c
 
 
b9f48c0
5348754
b9f48c0
e7e6260
62d25a6
240c790
 
 
5b8a14c
 
 
5348754
 
 
240c790
 
 
 
 
b9f48c0
62d25a6
 
 
 
 
 
 
 
b9f48c0
240c790
b9f48c0
 
 
 
 
 
 
 
 
 
 
62d25a6
b9f48c0
62d25a6
b9f48c0
240c790
b9f48c0
 
 
 
62d25a6
 
5233d34
 
 
240c790
5233d34
 
 
240c790
5233d34
240c790
5233d34
b9f48c0
 
 
 
 
 
 
 
 
 
 
 
 
 
5233d34
b9f48c0
 
 
 
240c790
b9f48c0
 
 
62d25a6
 
 
b9f48c0
 
62d25a6
5b8a14c
 
 
 
 
 
 
 
62d25a6
5b8a14c
 
62d25a6
5b8a14c
 
 
5348754
5b8a14c
 
 
fb59e81
5b8a14c
 
 
e7e6260
5b8a14c
 
 
 
 
 
 
 
 
5348754
2631941
 
 
 
5348754
 
 
 
 
 
 
 
 
 
 
 
 
fb59e81
5b8a14c
5348754
 
5b8a14c
 
5233d34
62d25a6
5b8a14c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import concurrent.futures
import base64

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ ํ† ํฐ ๊ฐ€์ ธ์˜ค๊ธฐ
HF_TOKEN = os.getenv("HF_TOKEN")

# ์ถ”๋ก  API ํด๋ผ์ด์–ธํŠธ ์„ค์ •
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)

# ์ „์—ญ ๋ณ€์ˆ˜๋กœ ์„ ํƒ๋œ space ์ •๋ณด ์ €์žฅ
selected_space_info = None

def get_headers():
    if not HF_TOKEN:
        raise ValueError("Hugging Face token not found in environment variables")
    return {"Authorization": f"Bearer {HF_TOKEN}"}

def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
    url = "https://huggingface.co/api/spaces"
    params = {
        "sort": "likes",
        "direction": -1,
        "limit": limit,
        "full": "true"
    }
    
    try:
        response = requests.get(url, params=params, headers=get_headers())
        response.raise_for_status()
        data = response.json()
        
        if isinstance(data, list):
            return data
        else:
            return f"Unexpected API response format: {type(data)}"
    except requests.RequestException as e:
        return f"API request error: {str(e)}"
    except ValueError as e:
        return f"JSON decoding error: {str(e)}"

def capture_thumbnail(space_id: str) -> str:
    screenshot_url = f"https://huggingface.co/spaces/{space_id}/screenshot.jpg"
    try:
        response = requests.get(screenshot_url, headers=get_headers())
        if response.status_code == 200:
            return base64.b64encode(response.content).decode('utf-8')
    except requests.RequestException:
        pass
    return ""

def get_app_py_content(space_id: str) -> str:
    app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
    try:
        response = requests.get(app_py_url, headers=get_headers())
        if response.status_code == 200:
            return response.text
        else:
            return f"app.py file not found or inaccessible for space: {space_id}"
    except requests.RequestException:
        return f"Error fetching app.py content for space: {space_id}"

def format_space(space: Dict) -> Dict:
    space_id = space.get('id', 'Unknown')
    space_name = space_id.split('/')[-1] if '/' in space_id else space_id
    
    space_author = space.get('author', 'Unknown')
    if isinstance(space_author, dict):
        space_author = space_author.get('user', space_author.get('name', 'Unknown'))
    
    space_likes = space.get('likes', 'N/A')
    space_url = f"https://huggingface.co/spaces/{space_id}"
    
    thumbnail = capture_thumbnail(space_id)
    
    return {
        "id": space_id,
        "name": space_name,
        "author": space_author,
        "likes": space_likes,
        "url": space_url,
        "thumbnail": thumbnail
    }

def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
    if isinstance(spaces, str):
        return [{"error": spaces}]
    
    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        return list(executor.map(format_space, spaces))

def summarize_space(space: Dict) -> str:
    system_message = "๋‹น์‹ ์€ Hugging Face Space์˜ ๋‚ด์šฉ์„ ์š”์•ฝํ•˜๋Š” AI ์กฐ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์š”์•ฝ์„ ์ œ๊ณตํ•ด์ฃผ์„ธ์š”."
    user_message = f"๋‹ค์Œ Hugging Face Space๋ฅผ ์š”์•ฝํ•ด์ฃผ์„ธ์š”: {space['name']} by {space['author']}. ์ข‹์•„์š” ์ˆ˜: {space['likes']}. URL: {space['url']}"
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_message}
    ]
    
    response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
    return response.choices[0].message.content

def create_ui():
    spaces_list = get_most_liked_spaces()
    formatted_spaces = format_spaces(spaces_list)
    print(f"Total spaces loaded: {len(formatted_spaces)}")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ

    with gr.Blocks() as demo:
        gr.Markdown("# Hugging Face Most Liked Spaces")
        
        with gr.Row():
            with gr.Column(scale=1):
                space_list = gr.List(
                    [(f"{space['name']} by {space['author']} (Likes: {space['likes']})", space['id']) for space in formatted_spaces],
                    label="Most Liked Spaces"
                )
                summarize_btn = gr.Button("์š”์•ฝ")
            
            with gr.Column(scale=2):
                output = gr.Textbox(label="Space ์ •๋ณด", lines=10)
                app_py_content = gr.Code(language="python", label="app.py ๋‚ด์šฉ")

        def on_select(evt: gr.SelectData):
            global selected_space_info
            selected_id = evt.value[1]  # tuple์˜ ๋‘ ๋ฒˆ์งธ ์š”์†Œ๊ฐ€ space_id์ž…๋‹ˆ๋‹ค.
            selected_space = next((space for space in formatted_spaces if space['id'] == selected_id), None)
            if selected_space:
                app_content = get_app_py_content(selected_id)
                selected_space_info = selected_space
                print(f"Selected space: {selected_space['name']}")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ
                return f"์„ ํƒ๋œ Space: {selected_space['name']} (ID: {selected_id})\nURL: {selected_space['url']}", app_content
            print(f"Selected space not found for ID: {selected_id}")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ
            return "์„ ํƒ๋œ space๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.", ""

        def on_summarize():
            global selected_space_info
            if selected_space_info:
                summary = summarize_space(selected_space_info)
                print(f"Summarizing space: {selected_space_info['name']}")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ
                return summary
            print("No space selected for summarization")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ
            return "์„ ํƒ๋œ space๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ฆฌ์ŠคํŠธ์—์„œ space๋ฅผ ์„ ํƒํ•ด์ฃผ์„ธ์š”."

        space_list.select(on_select, None, [output, app_py_content])
        summarize_btn.click(on_summarize, None, output)

    return demo

if __name__ == "__main__":
    demo = create_ui()
    demo.launch()