Spaces:
Running
Running
File size: 6,123 Bytes
5b8a14c b9f48c0 5348754 b9f48c0 e7e6260 62d25a6 240c790 5b8a14c 5348754 240c790 b9f48c0 62d25a6 b9f48c0 240c790 b9f48c0 62d25a6 b9f48c0 62d25a6 b9f48c0 240c790 b9f48c0 62d25a6 5233d34 240c790 5233d34 240c790 5233d34 240c790 5233d34 b9f48c0 5233d34 b9f48c0 240c790 b9f48c0 62d25a6 b9f48c0 62d25a6 5b8a14c 62d25a6 5b8a14c 62d25a6 5b8a14c 5348754 5b8a14c fb59e81 5b8a14c e7e6260 5b8a14c 5348754 2631941 5348754 fb59e81 5b8a14c 5348754 5b8a14c 5233d34 62d25a6 5b8a14c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import concurrent.futures
import base64
# ํ๊ฒฝ ๋ณ์์์ ํ ํฐ ๊ฐ์ ธ์ค๊ธฐ
HF_TOKEN = os.getenv("HF_TOKEN")
# ์ถ๋ก API ํด๋ผ์ด์ธํธ ์ค์
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)
# ์ ์ญ ๋ณ์๋ก ์ ํ๋ space ์ ๋ณด ์ ์ฅ
selected_space_info = None
def get_headers():
if not HF_TOKEN:
raise ValueError("Hugging Face token not found in environment variables")
return {"Authorization": f"Bearer {HF_TOKEN}"}
def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
url = "https://huggingface.co/api/spaces"
params = {
"sort": "likes",
"direction": -1,
"limit": limit,
"full": "true"
}
try:
response = requests.get(url, params=params, headers=get_headers())
response.raise_for_status()
data = response.json()
if isinstance(data, list):
return data
else:
return f"Unexpected API response format: {type(data)}"
except requests.RequestException as e:
return f"API request error: {str(e)}"
except ValueError as e:
return f"JSON decoding error: {str(e)}"
def capture_thumbnail(space_id: str) -> str:
screenshot_url = f"https://huggingface.co/spaces/{space_id}/screenshot.jpg"
try:
response = requests.get(screenshot_url, headers=get_headers())
if response.status_code == 200:
return base64.b64encode(response.content).decode('utf-8')
except requests.RequestException:
pass
return ""
def get_app_py_content(space_id: str) -> str:
app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
try:
response = requests.get(app_py_url, headers=get_headers())
if response.status_code == 200:
return response.text
else:
return f"app.py file not found or inaccessible for space: {space_id}"
except requests.RequestException:
return f"Error fetching app.py content for space: {space_id}"
def format_space(space: Dict) -> Dict:
space_id = space.get('id', 'Unknown')
space_name = space_id.split('/')[-1] if '/' in space_id else space_id
space_author = space.get('author', 'Unknown')
if isinstance(space_author, dict):
space_author = space_author.get('user', space_author.get('name', 'Unknown'))
space_likes = space.get('likes', 'N/A')
space_url = f"https://huggingface.co/spaces/{space_id}"
thumbnail = capture_thumbnail(space_id)
return {
"id": space_id,
"name": space_name,
"author": space_author,
"likes": space_likes,
"url": space_url,
"thumbnail": thumbnail
}
def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
if isinstance(spaces, str):
return [{"error": spaces}]
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
return list(executor.map(format_space, spaces))
def summarize_space(space: Dict) -> str:
system_message = "๋น์ ์ Hugging Face Space์ ๋ด์ฉ์ ์์ฝํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ ๋ณด๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ๋ช
ํํ ์์ฝ์ ์ ๊ณตํด์ฃผ์ธ์."
user_message = f"๋ค์ Hugging Face Space๋ฅผ ์์ฝํด์ฃผ์ธ์: {space['name']} by {space['author']}. ์ข์์ ์: {space['likes']}. URL: {space['url']}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
return response.choices[0].message.content
def create_ui():
spaces_list = get_most_liked_spaces()
formatted_spaces = format_spaces(spaces_list)
print(f"Total spaces loaded: {len(formatted_spaces)}") # ๋๋ฒ๊น
์ถ๋ ฅ
with gr.Blocks() as demo:
gr.Markdown("# Hugging Face Most Liked Spaces")
with gr.Row():
with gr.Column(scale=1):
space_list = gr.List(
[(f"{space['name']} by {space['author']} (Likes: {space['likes']})", space['id']) for space in formatted_spaces],
label="Most Liked Spaces"
)
summarize_btn = gr.Button("์์ฝ")
with gr.Column(scale=2):
output = gr.Textbox(label="Space ์ ๋ณด", lines=10)
app_py_content = gr.Code(language="python", label="app.py ๋ด์ฉ")
def on_select(evt: gr.SelectData):
global selected_space_info
selected_id = evt.value[1] # tuple์ ๋ ๋ฒ์งธ ์์๊ฐ space_id์
๋๋ค.
selected_space = next((space for space in formatted_spaces if space['id'] == selected_id), None)
if selected_space:
app_content = get_app_py_content(selected_id)
selected_space_info = selected_space
print(f"Selected space: {selected_space['name']}") # ๋๋ฒ๊น
์ถ๋ ฅ
return f"์ ํ๋ Space: {selected_space['name']} (ID: {selected_id})\nURL: {selected_space['url']}", app_content
print(f"Selected space not found for ID: {selected_id}") # ๋๋ฒ๊น
์ถ๋ ฅ
return "์ ํ๋ space๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.", ""
def on_summarize():
global selected_space_info
if selected_space_info:
summary = summarize_space(selected_space_info)
print(f"Summarizing space: {selected_space_info['name']}") # ๋๋ฒ๊น
์ถ๋ ฅ
return summary
print("No space selected for summarization") # ๋๋ฒ๊น
์ถ๋ ฅ
return "์ ํ๋ space๊ฐ ์์ต๋๋ค. ๋จผ์ ๋ฆฌ์คํธ์์ space๋ฅผ ์ ํํด์ฃผ์ธ์."
space_list.select(on_select, None, [output, app_py_content])
summarize_btn.click(on_summarize, None, output)
return demo
if __name__ == "__main__":
demo = create_ui()
demo.launch() |