Spaces:
Running
Running
File size: 7,168 Bytes
7cb753c 730989a eaa9ab5 88fe1ec 5199ff1 7cb753c 587b6d5 7cb753c 4855252 7cb753c 29af47d 7cb753c ccbe8d0 7cb753c 4855252 29af47d 4855252 e1e1afb 4855252 e1e1afb 4855252 8477558 4855252 026790d d934b2b d470784 abbf372 d470784 d934b2b abbf372 eaa9ab5 4855252 eaa9ab5 4855252 990edf6 eaa9ab5 4855252 eaa9ab5 730989a eaa9ab5 8888ccb eaa9ab5 88fe1ec 7cb753c 1edcd51 7cb753c 423f90c da191b4 423f90c d934b2b 423f90c d470784 423f90c abbf372 eaa9ab5 f355446 423f90c daffb13 abbf372 eaa9ab5 daffb13 eaa9ab5 daffb13 d470784 423f90c 1edcd51 f355446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import traceback
from PIL import Image
from io import BytesIO
import asyncio
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.chrome.options import Options
HF_TOKEN = os.getenv("HF_TOKEN")
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)
def get_headers():
if not HF_TOKEN:
raise ValueError("Hugging Face token not found in environment variables")
return {"Authorization": f"Bearer {HF_TOKEN}"}
def get_most_liked_spaces(limit: int = 300) -> Union[List[Dict], str]:
url = "https://huggingface.co/api/spaces"
params = {
"sort": "likes",
"direction": -1,
"limit": limit,
"full": "true"
}
try:
response = requests.get(url, params=params, headers=get_headers())
response.raise_for_status()
return response.json()
except requests.RequestException as e:
return f"API request error: {str(e)}"
except ValueError as e:
return f"JSON decoding error: {str(e)}"
def format_space(space: Dict) -> Dict:
space_id = space.get('id', 'Unknown')
space_name = space_id.split('/')[-1] if '/' in space_id else space_id
space_author = space.get('author', 'Unknown')
if isinstance(space_author, dict):
space_author = space_author.get('user', space_author.get('name', 'Unknown'))
space_likes = space.get('likes', 'N/A')
space_url = f"https://huggingface.co/spaces/{space_id}"
return {
"id": space_id,
"name": space_name,
"author": space_author,
"likes": space_likes,
"url": space_url,
}
def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
if isinstance(spaces, str):
return [{"error": spaces}]
return [format_space(space) for space in spaces if isinstance(space, dict)]
def summarize_space(space: Dict) -> str:
system_message = "๋น์ ์ Hugging Face Space์ ๋ด์ฉ์ ์์ฝํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ ๋ณด๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ๋ช
ํํ ์์ฝ์ ์ ๊ณตํด์ฃผ์ธ์."
user_message = f"๋ค์ Hugging Face Space๋ฅผ ์์ฝํด์ฃผ์ธ์: {space['name']} by {space['author']}. ์ข์์ ์: {space['likes']}. URL: {space['url']}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
try:
response = hf_client.chat_completion(messages, max_tokens=400, temperature=0.7)
return response.choices[0].message.content
except Exception as e:
return f"์์ฝ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
def get_app_py_content(space_id: str) -> str:
app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
try:
response = requests.get(app_py_url, headers=get_headers())
if response.status_code == 200:
content = response.text
if len(content) > 500: # ๋ด์ฉ์ 500์๋ก ์ ํํฉ๋๋ค
content = content[:497] + "..."
return content
else:
return f"app.py file not found or inaccessible for space: {space_id}"
except requests.RequestException:
return f"Error fetching app.py content for space: {space_id}"
async def on_select(space):
try:
summary = summarize_space(space)
app_content = get_app_py_content(space['id'])
screenshot = await take_screenshot(space['url'])
info = f"์ ํ๋ Space: {space['name']} (ID: {space['id']})\n"
info += f"Author: {space['author']}\n"
info += f"Likes: {space['likes']}\n"
info += f"URL: {space['url']}\n\n"
info += f"์์ฝ:\n{summary}"
return info, app_content, screenshot
except Exception as e:
print(f"Error in on_select: {str(e)}")
print(traceback.format_exc())
return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", "", Image.new('RGB', (1080, 720), color='lightgray')
async def take_screenshot(url):
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
try:
service = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service, options=options)
driver.set_window_size(1080, 720)
driver.get(url)
await asyncio.sleep(5) # Wait for the page to load
screenshot = driver.get_screenshot_as_png()
return Image.open(BytesIO(screenshot))
except Exception as e:
print(f"Screenshot error: {str(e)}")
return Image.new('RGB', (1080, 720), color='lightgray')
finally:
if 'driver' in locals():
driver.quit()
def create_ui():
try:
spaces_list = get_most_liked_spaces()
print(f"Type of spaces_list: {type(spaces_list)}")
formatted_spaces = format_spaces(spaces_list)
print(f"Total spaces loaded: {len(formatted_spaces)}")
css = """
footer {visibility: hidden;}
.minimal-button {min-width: 30px !important; height: 25px !important; line-height: 1 !important; font-size: 12px !important; padding: 2px 5px !important;}
.space-row {margin-bottom: 5px !important;}
"""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Hugging Face Most Liked Spaces")
with gr.Row():
with gr.Column(scale=1):
space_rows = []
for space in formatted_spaces:
with gr.Row(elem_classes="space-row") as space_row:
with gr.Column():
gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
space_rows.append((space_row, button, space))
with gr.Column(scale=1):
info_output = gr.Textbox(label="Space ์ ๋ณด ๋ฐ ์์ฝ", lines=20)
screenshot_output = gr.Image(type="pil", label="Space ์คํฌ๋ฆฐ์ท", height=360, width=540)
app_py_content = gr.Code(language="python", label="app.py ๋ด์ฉ")
for _, button, space in space_rows:
button.click(
lambda s=space: asyncio.run(on_select(s)),
inputs=[],
outputs=[info_output, app_py_content, screenshot_output]
)
return demo
except Exception as e:
print(f"Error in create_ui: {str(e)}")
print(traceback.format_exc())
raise
if __name__ == "__main__":
try:
demo = create_ui()
demo.launch()
except Exception as e:
print(f"Error in main: {str(e)}")
print(traceback.format_exc()) |