File size: 6,568 Bytes
7cb753c
 
 
 
 
 
730989a
 
eaa9ab5
e7ad194
88fe1ec
7cb753c
 
 
 
 
 
 
 
587b6d5
7cb753c
 
 
 
 
 
 
 
 
 
 
4855252
7cb753c
 
 
 
 
29af47d
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe8d0
7cb753c
 
4855252
 
 
29af47d
4855252
 
 
 
 
e1e1afb
4855252
 
 
 
e1e1afb
4855252
8477558
4855252
 
 
026790d
d934b2b
 
 
 
 
d470784
abbf372
 
d470784
d934b2b
 
 
 
abbf372
e7ad194
4855252
 
 
e7ad194
4855252
 
 
 
990edf6
eaa9ab5
4855252
 
 
eaa9ab5
e7ad194
 
730989a
e7ad194
 
 
8888ccb
eaa9ab5
 
3b4bd32
7cb753c
1edcd51
 
 
 
 
7cb753c
423f90c
 
 
 
 
da191b4
423f90c
11aeea5
d934b2b
423f90c
 
 
 
 
 
 
 
 
d470784
423f90c
abbf372
11aeea5
f355446
423f90c
daffb13
abbf372
e7ad194
 
 
daffb13
d470784
e7ad194
423f90c
1edcd51
 
 
 
 
 
 
 
 
 
 
 
f355446
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import traceback
from PIL import Image
from io import BytesIO
import asyncio
from gradio_client import Client

HF_TOKEN = os.getenv("HF_TOKEN")
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)

def get_headers():
    if not HF_TOKEN:
        raise ValueError("Hugging Face token not found in environment variables")
    return {"Authorization": f"Bearer {HF_TOKEN}"}

def get_most_liked_spaces(limit: int = 300) -> Union[List[Dict], str]:
    url = "https://huggingface.co/api/spaces"
    params = {
        "sort": "likes",
        "direction": -1,
        "limit": limit,
        "full": "true"
    }
    
    try:
        response = requests.get(url, params=params, headers=get_headers())
        response.raise_for_status()
        return response.json()
    except requests.RequestException as e:
        return f"API request error: {str(e)}"
    except ValueError as e:
        return f"JSON decoding error: {str(e)}"

def format_space(space: Dict) -> Dict:
    space_id = space.get('id', 'Unknown')
    space_name = space_id.split('/')[-1] if '/' in space_id else space_id
    
    space_author = space.get('author', 'Unknown')
    if isinstance(space_author, dict):
        space_author = space_author.get('user', space_author.get('name', 'Unknown'))
    
    space_likes = space.get('likes', 'N/A')
    space_url = f"https://huggingface.co/spaces/{space_id}"
    
    return {
        "id": space_id,
        "name": space_name,
        "author": space_author,
        "likes": space_likes,
        "url": space_url,
    }

def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
    if isinstance(spaces, str):
        return [{"error": spaces}]
    
    return [format_space(space) for space in spaces if isinstance(space, dict)]

def summarize_space(space: Dict) -> str:
    system_message = "๋‹น์‹ ์€ Hugging Face Space์˜ ๋‚ด์šฉ์„ ์š”์•ฝํ•˜๋Š” AI ์กฐ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์š”์•ฝ์„ ์ œ๊ณตํ•ด์ฃผ์„ธ์š”."
    user_message = f"๋‹ค์Œ Hugging Face Space๋ฅผ ์š”์•ฝํ•ด์ฃผ์„ธ์š”: {space['name']} by {space['author']}. ์ข‹์•„์š” ์ˆ˜: {space['likes']}. URL: {space['url']}"
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_message}
    ]
    
    try:
        response = hf_client.chat_completion(messages, max_tokens=400, temperature=0.7)
        return response.choices[0].message.content
    except Exception as e:
        return f"์š”์•ฝ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}"

def get_app_py_content(space_id: str) -> str:
    app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
    try:
        response = requests.get(app_py_url, headers=get_headers())
        if response.status_code == 200:
            content = response.text
            if len(content) > 500:  # ๋‚ด์šฉ์„ 500์ž๋กœ ์ œํ•œํ•ฉ๋‹ˆ๋‹ค
                content = content[:497] + "..."
            return content
        else:
            return f"app.py file not found or inaccessible for space: {space_id}"
    except requests.RequestException:
        return f"Error fetching app.py content for space: {space_id}"
        
def on_select(space):
    try:
        summary = summarize_space(space)
        app_content = get_app_py_content(space['id'])
        screenshot = take_screenshot(space['url'])
        info = f"์„ ํƒ๋œ Space: {space['name']} (ID: {space['id']})\n"
        info += f"Author: {space['author']}\n"
        info += f"Likes: {space['likes']}\n"
        info += f"URL: {space['url']}\n\n"
        info += f"์š”์•ฝ:\n{summary}"
        return info, app_content, screenshot
    except Exception as e:
        print(f"Error in on_select: {str(e)}")
        print(traceback.format_exc())
        return f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}", "", Image.new('RGB', (1080, 720), color='lightgray')
        
def take_screenshot(url):
    try:
        client = Client("ginipick/selenium-screenshot-gradio")
        result = client.predict(url=url, api_name="/predict")
        return Image.open(result)
    except Exception as e:
        print(f"Screenshot error: {str(e)}")
        return Image.new('RGB', (1080, 720), color='lightgray')
            
def create_ui():
    try:
        spaces_list = get_most_liked_spaces()
        print(f"Type of spaces_list: {type(spaces_list)}")
        formatted_spaces = format_spaces(spaces_list)
        print(f"Total spaces loaded: {len(formatted_spaces)}")

        css = """
        footer {visibility: hidden;}
        .minimal-button {min-width: 30px !important; height: 25px !important; line-height: 1 !important; font-size: 12px !important; padding: 2px 5px !important;}
        .space-row {margin-bottom: 5px !important;}
        """

        with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
            gr.Markdown("# 300: HuggingFace Most Liked Spaces")
            
            with gr.Row():
                with gr.Column(scale=1):
                    space_rows = []
                    for space in formatted_spaces:
                        with gr.Row(elem_classes="space-row") as space_row:
                            with gr.Column():
                                gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
                                button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
                        space_rows.append((space_row, button, space))

                with gr.Column(scale=1):
                    info_output = gr.Textbox(label="Space ์ •๋ณด ๋ฐ ์š”์•ฝ", lines=20)
                    screenshot_output = gr.Image(type="pil", label="Space ์Šคํฌ๋ฆฐ์ƒท", height=360, width=600)
                    app_py_content = gr.Code(language="python", label="app.py ๋‚ด์šฉ")

                for _, button, space in space_rows:
                    button.click(
                        lambda s=space: on_select(s),
                            inputs=[],
                            outputs=[info_output, app_py_content, screenshot_output]
                    )


        return demo

    except Exception as e:
        print(f"Error in create_ui: {str(e)}")
        print(traceback.format_exc())
        raise

if __name__ == "__main__":
    try:
        demo = create_ui()
        demo.launch()
    except Exception as e:
        print(f"Error in main: {str(e)}")
        print(traceback.format_exc())