Spaces:
Running
Running
File size: 7,364 Bytes
7cb753c 95523ac ccbe8d0 95523ac ccbe8d0 718118e a187738 026790d 7cb753c ccbe8d0 718118e ccbe8d0 7cb753c ccbe8d0 718118e 7cb753c 026790d d934b2b 7cb753c da191b4 9963b1f da191b4 ccbe8d0 0293fc4 ccbe8d0 718118e da191b4 f0fbe3a 718118e f0fbe3a 9963b1f 7cb753c d934b2b f0fbe3a 8934894 f0fbe3a ccbe8d0 95523ac ccbe8d0 95523ac ccbe8d0 718118e ccbe8d0 f0fbe3a d934b2b f0fbe3a 7cb753c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import concurrent.futures
import traceback
# ํ๊ฒฝ ๋ณ์์์ ํ ํฐ ๊ฐ์ ธ์ค๊ธฐ
HF_TOKEN = os.getenv("HF_TOKEN")
# ์ถ๋ก API ํด๋ผ์ด์ธํธ ์ค์
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)
def get_headers():
if not HF_TOKEN:
raise ValueError("Hugging Face token not found in environment variables")
return {"Authorization": f"Bearer {HF_TOKEN}"}
def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
url = "https://huggingface.co/api/spaces"
params = {
"sort": "likes",
"direction": -1,
"limit": limit,
"full": "true"
}
try:
response = requests.get(url, params=params, headers=get_headers())
response.raise_for_status()
data = response.json()
if isinstance(data, list):
return data
else:
return f"Unexpected API response format: {type(data)}"
except requests.RequestException as e:
return f"API request error: {str(e)}"
except ValueError as e:
return f"JSON decoding error: {str(e)}"
def capture_thumbnail(space_id: str) -> bytes:
screenshot_url = f"https://huggingface.co/spaces/{space_id}/thumbnail.png"
try:
response = requests.get(screenshot_url, headers=get_headers())
if response.status_code == 200:
return response.content
except requests.RequestException:
pass
return None
def get_hardware_requirements(space: Dict) -> str:
sdk_version = space.get('sdk', {}).get('hf', {}).get('version')
if sdk_version and int(sdk_version.split('.')[0]) >= 3:
return space.get('sdk', {}).get('hardware', 'Unknown')
else:
return 'CPU' if space.get('host_requirements', {}).get('hardware', {}).get('gpu') is False else 'GPU'
def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
if isinstance(spaces, str):
return [{"error": spaces}]
valid_spaces = [space for space in spaces if isinstance(space, dict)]
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
return list(executor.map(format_space, valid_spaces))
def format_space(space: Union[Dict, str]) -> Dict:
if not isinstance(space, dict):
return {"error": "Invalid space data"}
space_id = space.get('id', 'Unknown')
space_name = space_id.split('/')[-1] if '/' in space_id else space_id
space_author = space.get('author', 'Unknown')
if isinstance(space_author, dict):
space_author = space_author.get('user', space_author.get('name', 'Unknown'))
space_likes = space.get('likes', 'N/A')
space_url = f"https://huggingface.co/spaces/{space_id}"
thumbnail = capture_thumbnail(space_id)
hardware = get_hardware_requirements(space)
return {
"id": space_id,
"name": space_name,
"author": space_author,
"likes": space_likes,
"url": space_url,
"thumbnail": thumbnail,
"hardware": hardware
}
def get_app_py_content(space_id: str) -> str:
app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
try:
response = requests.get(app_py_url, headers=get_headers())
if response.status_code == 200:
return response.text
else:
return f"app.py file not found or inaccessible for space: {space_id}"
except requests.RequestException:
return f"Error fetching app.py content for space: {space_id}"
def summarize_space(space: Dict) -> str:
system_message = "๋น์ ์ Hugging Face Space์ ๋ด์ฉ์ ์์ฝํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ ๋ณด๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ๋ช
ํํ ์์ฝ์ ์ ๊ณตํด์ฃผ์ธ์."
user_message = f"๋ค์ Hugging Face Space๋ฅผ ์์ฝํด์ฃผ์ธ์: {space['name']} by {space['author']}. ์ข์์ ์: {space['likes']}. URL: {space['url']}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
return response.choices[0].message.content
def create_ui():
spaces_list = get_most_liked_spaces()
formatted_spaces = format_spaces(spaces_list)
print(f"Total spaces loaded: {len(formatted_spaces)}") # ๋๋ฒ๊น
์ถ๋ ฅ
css = """
footer {
visibility: hidden;
}
.minimal-button {
min-width: 30px !important;
height: 25px !important;
line-height: 1 !important;
font-size: 12px !important;
padding: 2px 5px !important;
}
.space-row {
margin-bottom: 5px !important;
}
.thumbnail {
width: 100px;
height: 100px;
object-fit: cover;
}
.hardware-info {
font-size: 12px;
color: #666;
}
"""
def on_select(space):
try:
summary = summarize_space(space)
app_content = get_app_py_content(space['id'])
info = f"์ ํ๋ Space: {space['name']} (ID: {space['id']})\n"
info += f"Author: {space['author']}\n"
info += f"Likes: {space['likes']}\n"
info += f"Hardware: {space['hardware']}\n"
info += f"URL: {space['url']}\n\n"
info += f"์์ฝ:\n{summary}"
return info, app_content
except Exception as e:
print(f"Error in on_select: {str(e)}")
print(traceback.format_exc())
return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", ""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Hugging Face Most Liked Spaces")
with gr.Row():
with gr.Column(scale=1):
space_rows = []
for space in formatted_spaces:
with gr.Row(elem_classes="space-row") as space_row:
if space['thumbnail']:
gr.Image(value=space['thumbnail'], shape=(100, 100), show_label=False, elem_classes="thumbnail")
else:
gr.Image(value="https://huggingface.co/front/assets/huggingface_logo-noborder.svg", shape=(100, 100), show_label=False, elem_classes="thumbnail")
with gr.Column():
gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
gr.Markdown(f"Hardware: {space['hardware']}", elem_classes="hardware-info")
button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
space_rows.append((space_row, button, space))
with gr.Column(scale=1):
info_output = gr.Textbox(label="Space ์ ๋ณด ๋ฐ ์์ฝ", lines=10)
app_py_content = gr.Code(language="python", label="app.py ๋ด์ฉ")
for _, button, space in space_rows:
button.click(
lambda s=space: on_select(s),
inputs=[],
outputs=[info_output, app_py_content]
)
return demo
if __name__ == "__main__":
demo = create_ui()
demo.launch() |