File size: 7,364 Bytes
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95523ac
ccbe8d0
 
 
 
95523ac
ccbe8d0
 
 
 
718118e
 
 
 
 
 
 
a187738
 
 
 
 
 
 
 
 
026790d
 
 
 
7cb753c
 
 
 
 
 
 
 
 
 
ccbe8d0
718118e
ccbe8d0
7cb753c
 
 
 
 
ccbe8d0
718118e
 
7cb753c
 
026790d
d934b2b
 
 
 
 
 
 
 
 
 
 
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da191b4
9963b1f
 
 
da191b4
 
 
 
 
 
 
 
 
 
ccbe8d0
0293fc4
 
 
ccbe8d0
718118e
 
 
 
da191b4
 
f0fbe3a
 
 
 
 
 
 
718118e
f0fbe3a
 
 
 
 
 
 
 
9963b1f
7cb753c
 
 
d934b2b
f0fbe3a
8934894
f0fbe3a
ccbe8d0
95523ac
ccbe8d0
95523ac
ccbe8d0
 
718118e
ccbe8d0
f0fbe3a
d934b2b
 
 
 
 
f0fbe3a
 
 
 
 
 
7cb753c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import concurrent.futures
import traceback

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ ํ† ํฐ ๊ฐ€์ ธ์˜ค๊ธฐ
HF_TOKEN = os.getenv("HF_TOKEN")

# ์ถ”๋ก  API ํด๋ผ์ด์–ธํŠธ ์„ค์ •
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)

def get_headers():
    if not HF_TOKEN:
        raise ValueError("Hugging Face token not found in environment variables")
    return {"Authorization": f"Bearer {HF_TOKEN}"}

def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
    url = "https://huggingface.co/api/spaces"
    params = {
        "sort": "likes",
        "direction": -1,
        "limit": limit,
        "full": "true"
    }
    
    try:
        response = requests.get(url, params=params, headers=get_headers())
        response.raise_for_status()
        data = response.json()
        
        if isinstance(data, list):
            return data
        else:
            return f"Unexpected API response format: {type(data)}"
    except requests.RequestException as e:
        return f"API request error: {str(e)}"
    except ValueError as e:
        return f"JSON decoding error: {str(e)}"

def capture_thumbnail(space_id: str) -> bytes:
    screenshot_url = f"https://huggingface.co/spaces/{space_id}/thumbnail.png"
    try:
        response = requests.get(screenshot_url, headers=get_headers())
        if response.status_code == 200:
            return response.content
    except requests.RequestException:
        pass
    return None

def get_hardware_requirements(space: Dict) -> str:
    sdk_version = space.get('sdk', {}).get('hf', {}).get('version')
    if sdk_version and int(sdk_version.split('.')[0]) >= 3:
        return space.get('sdk', {}).get('hardware', 'Unknown')
    else:
        return 'CPU' if space.get('host_requirements', {}).get('hardware', {}).get('gpu') is False else 'GPU'

def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
    if isinstance(spaces, str):
        return [{"error": spaces}]
    
    valid_spaces = [space for space in spaces if isinstance(space, dict)]
    
    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        return list(executor.map(format_space, valid_spaces))

def format_space(space: Union[Dict, str]) -> Dict:
    if not isinstance(space, dict):
        return {"error": "Invalid space data"}

    space_id = space.get('id', 'Unknown')
    space_name = space_id.split('/')[-1] if '/' in space_id else space_id
    
    space_author = space.get('author', 'Unknown')
    if isinstance(space_author, dict):
        space_author = space_author.get('user', space_author.get('name', 'Unknown'))
    
    space_likes = space.get('likes', 'N/A')
    space_url = f"https://huggingface.co/spaces/{space_id}"
    
    thumbnail = capture_thumbnail(space_id)
    hardware = get_hardware_requirements(space)
    
    return {
        "id": space_id,
        "name": space_name,
        "author": space_author,
        "likes": space_likes,
        "url": space_url,
        "thumbnail": thumbnail,
        "hardware": hardware
    }


def get_app_py_content(space_id: str) -> str:
    app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
    try:
        response = requests.get(app_py_url, headers=get_headers())
        if response.status_code == 200:
            return response.text
        else:
            return f"app.py file not found or inaccessible for space: {space_id}"
    except requests.RequestException:
        return f"Error fetching app.py content for space: {space_id}"

def summarize_space(space: Dict) -> str:
    system_message = "๋‹น์‹ ์€ Hugging Face Space์˜ ๋‚ด์šฉ์„ ์š”์•ฝํ•˜๋Š” AI ์กฐ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์š”์•ฝ์„ ์ œ๊ณตํ•ด์ฃผ์„ธ์š”."
    user_message = f"๋‹ค์Œ Hugging Face Space๋ฅผ ์š”์•ฝํ•ด์ฃผ์„ธ์š”: {space['name']} by {space['author']}. ์ข‹์•„์š” ์ˆ˜: {space['likes']}. URL: {space['url']}"
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_message}
    ]
    
    response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
    return response.choices[0].message.content

def create_ui():
    spaces_list = get_most_liked_spaces()
    formatted_spaces = format_spaces(spaces_list)
    print(f"Total spaces loaded: {len(formatted_spaces)}")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ

    css = """
    footer {
        visibility: hidden;
    }
    .minimal-button {
        min-width: 30px !important;
        height: 25px !important;
        line-height: 1 !important;
        font-size: 12px !important;
        padding: 2px 5px !important;
    }
    .space-row {
        margin-bottom: 5px !important;
    }
    .thumbnail {
        width: 100px;
        height: 100px;
        object-fit: cover;
    }
    .hardware-info {
        font-size: 12px;
        color: #666;
    }
    """

    def on_select(space):
        try:
            summary = summarize_space(space)
            app_content = get_app_py_content(space['id'])
            info = f"์„ ํƒ๋œ Space: {space['name']} (ID: {space['id']})\n"
            info += f"Author: {space['author']}\n"
            info += f"Likes: {space['likes']}\n"
            info += f"Hardware: {space['hardware']}\n"
            info += f"URL: {space['url']}\n\n"
            info += f"์š”์•ฝ:\n{summary}"
            return info, app_content
        except Exception as e:
            print(f"Error in on_select: {str(e)}")
            print(traceback.format_exc())
            return f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}", ""

    with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
        gr.Markdown("# Hugging Face Most Liked Spaces")
        
        with gr.Row():
            with gr.Column(scale=1):
                space_rows = []
                for space in formatted_spaces:
                    with gr.Row(elem_classes="space-row") as space_row:
                        if space['thumbnail']:
                            gr.Image(value=space['thumbnail'], shape=(100, 100), show_label=False, elem_classes="thumbnail")
                        else:
                            gr.Image(value="https://huggingface.co/front/assets/huggingface_logo-noborder.svg", shape=(100, 100), show_label=False, elem_classes="thumbnail")
                        with gr.Column():
                            gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
                            gr.Markdown(f"Hardware: {space['hardware']}", elem_classes="hardware-info")
                            button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
                    space_rows.append((space_row, button, space))
            
            with gr.Column(scale=1):
                info_output = gr.Textbox(label="Space ์ •๋ณด ๋ฐ ์š”์•ฝ", lines=10)
                app_py_content = gr.Code(language="python", label="app.py ๋‚ด์šฉ")

        for _, button, space in space_rows:
            button.click(
                lambda s=space: on_select(s),
                inputs=[],
                outputs=[info_output, app_py_content]
            )

    return demo

if __name__ == "__main__":
    demo = create_ui()
    demo.launch()