|
import math |
|
import numpy as np |
|
import matplotlib |
|
import cv2 |
|
|
|
|
|
eps = 0.01 |
|
|
|
def alpha_blend_color(color, alpha): |
|
"""blend color according to point conf |
|
""" |
|
return [int(c * alpha) for c in color] |
|
|
|
def draw_bodypose(canvas, candidate, subset, score): |
|
H, W, C = canvas.shape |
|
candidate = np.array(candidate) |
|
subset = np.array(subset) |
|
|
|
stickwidth = 4 |
|
|
|
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ |
|
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ |
|
[1, 16], [16, 18], [3, 17], [6, 18]] |
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ |
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ |
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] |
|
|
|
for i in range(17): |
|
for n in range(len(subset)): |
|
index = subset[n][np.array(limbSeq[i]) - 1] |
|
conf = score[n][np.array(limbSeq[i]) - 1] |
|
if conf[0] < 0.3 or conf[1] < 0.3: |
|
continue |
|
Y = candidate[index.astype(int), 0] * float(W) |
|
X = candidate[index.astype(int), 1] * float(H) |
|
mX = np.mean(X) |
|
mY = np.mean(Y) |
|
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) |
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) |
|
cv2.fillConvexPoly(canvas, polygon, alpha_blend_color(colors[i], conf[0] * conf[1])) |
|
|
|
canvas = (canvas * 0.6).astype(np.uint8) |
|
|
|
for i in range(18): |
|
for n in range(len(subset)): |
|
index = int(subset[n][i]) |
|
if index == -1: |
|
continue |
|
x, y = candidate[index][0:2] |
|
conf = score[n][i] |
|
x = int(x * W) |
|
y = int(y * H) |
|
cv2.circle(canvas, (int(x), int(y)), 4, alpha_blend_color(colors[i], conf), thickness=-1) |
|
|
|
return canvas |
|
|
|
|
|
def draw_bodypose_white(canvas, candidate, subset, score): |
|
H, W, C = canvas.shape |
|
candidate = np.array(candidate) |
|
subset = np.array(subset) |
|
|
|
stickwidth = 4 |
|
|
|
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ |
|
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ |
|
[1, 16], [16, 18], [3, 17], [6, 18]] |
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ |
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ |
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] |
|
|
|
for i in range(17): |
|
for n in range(len(subset)): |
|
index = subset[n][np.array(limbSeq[i]) - 1] |
|
conf = score[n][np.array(limbSeq[i]) - 1] |
|
if conf[0] < 0.3 or conf[1] < 0.3: |
|
continue |
|
Y = candidate[index.astype(int), 0] * float(W) |
|
X = candidate[index.astype(int), 1] * float(H) |
|
mX = np.mean(X) |
|
mY = np.mean(Y) |
|
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) |
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) |
|
cv2.fillConvexPoly(canvas, polygon, alpha_blend_color(colors[i], conf[0] * conf[1])) |
|
|
|
|
|
|
|
for i in range(18): |
|
for n in range(len(subset)): |
|
index = int(subset[n][i]) |
|
if index == -1: |
|
continue |
|
x, y = candidate[index][0:2] |
|
conf = score[n][i] |
|
x = int(x * W) |
|
y = int(y * H) |
|
cv2.circle(canvas, (int(x), int(y)), 4, alpha_blend_color(colors[i], conf), thickness=-1) |
|
|
|
return canvas |
|
|
|
def draw_handpose(canvas, all_hand_peaks, all_hand_scores): |
|
H, W, C = canvas.shape |
|
|
|
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ |
|
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] |
|
|
|
for peaks, scores in zip(all_hand_peaks, all_hand_scores): |
|
|
|
for ie, e in enumerate(edges): |
|
x1, y1 = peaks[e[0]] |
|
x2, y2 = peaks[e[1]] |
|
x1 = int(x1 * W) |
|
y1 = int(y1 * H) |
|
x2 = int(x2 * W) |
|
y2 = int(y2 * H) |
|
score = int(scores[e[0]] * scores[e[1]] * 255) |
|
if x1 > eps and y1 > eps and x2 > eps and y2 > eps: |
|
cv2.line(canvas, (x1, y1), (x2, y2), |
|
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * score, thickness=2) |
|
|
|
for i, keyponit in enumerate(peaks): |
|
x, y = keyponit |
|
x = int(x * W) |
|
y = int(y * H) |
|
score = int(scores[i] * 255) |
|
if x > eps and y > eps: |
|
cv2.circle(canvas, (x, y), 4, (0, 0, score), thickness=-1) |
|
return canvas |
|
|
|
def draw_facepose(canvas, all_lmks, all_scores): |
|
H, W, C = canvas.shape |
|
for lmks, scores in zip(all_lmks, all_scores): |
|
for lmk, score in zip(lmks, scores): |
|
x, y = lmk |
|
x = int(x * W) |
|
y = int(y * H) |
|
conf = int(score * 255) |
|
if x > eps and y > eps: |
|
cv2.circle(canvas, (x, y), 3, (conf, conf, conf), thickness=-1) |
|
return canvas |
|
|
|
|
|
def draw_pose_select_v2(pose, H, W, ref_w=2160): |
|
"""vis dwpose outputs |
|
|
|
Args: |
|
pose (List): DWposeDetector outputs in dwpose_detector.py |
|
H (int): height |
|
W (int): width |
|
ref_w (int, optional) Defaults to 2160. |
|
|
|
Returns: |
|
np.ndarray: image pixel value in RGB mode |
|
""" |
|
bodies = pose['bodies'] |
|
hands = pose['hands'] |
|
|
|
sz = min(H, W) |
|
sr = (ref_w / sz) if sz != ref_w else 1 |
|
|
|
|
|
canvas = np.zeros(shape=(int(H*sr), int(W*sr), 3), dtype=np.uint8) |
|
|
|
|
|
canvas = draw_handpose(canvas, hands, pose['hands_score']) |
|
|
|
return cv2.cvtColor(cv2.resize(canvas, (W, H)), cv2.COLOR_BGR2RGB).transpose(2, 0, 1) |
|
|