ginipick commited on
Commit
3f9f026
ยท
verified ยท
1 Parent(s): ccfa6c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +559 -302
app.py CHANGED
@@ -1,50 +1,26 @@
1
  import os
2
  import spaces
 
3
  import time
4
  import gradio as gr
5
  import torch
6
- from torch import Tensor, nn
7
  from PIL import Image
8
  from torchvision import transforms
9
  from dataclasses import dataclass
10
  import math
11
  from typing import Callable
12
- import random
13
  from tqdm import tqdm
14
  import bitsandbytes as bnb
15
  from bitsandbytes.nn.modules import Params4bit, QuantState
16
- from transformers import (
17
- MarianTokenizer,
18
- MarianMTModel,
19
- CLIPTextModel, CLIPTokenizer,
20
- T5EncoderModel, T5Tokenizer
21
- )
22
- from diffusers import AutoencoderKL
23
- from huggingface_hub import hf_hub_download
24
- from safetensors.torch import load_file
25
- from einops import rearrange, repeat
26
 
27
- # 1) ์žฅ์น˜ ์„ค์ •
28
- torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
-
30
- # 2) ๋ฒˆ์—ญ ๋ชจ๋ธ์„ CPU์—์„œ, ๋ฐ˜๋“œ์‹œ PyTorch ์ฒดํฌํฌ์ธํŠธ๋กœ ๋กœ๋“œ
31
- trans_tokenizer = MarianTokenizer.from_pretrained(
32
- "Helsinki-NLP/opus-mt-ko-en"
33
- )
34
- trans_model = MarianMTModel.from_pretrained(
35
- "Helsinki-NLP/opus-mt-ko-en",
36
- from_tf=True, # TF ์ฒดํฌํฌ์ธํŠธ๋ผ๋„ PyTorch ๋กœ๋“œ
37
- torch_dtype=torch.float32,
38
- ).to(torch.device("cpu"))
39
-
40
- def translate_ko_to_en(text: str, max_length: int = 512) -> str:
41
- """ํ•œ๊ธ€ โ†’ ์˜์–ด ๋ฒˆ์—ญ (CPU)"""
42
- batch = trans_tokenizer([text], return_tensors="pt", padding=True)
43
- # ๋ชจ๋ธ์€ CPU์— ์žˆ์œผ๋ฏ€๋กœ .to("cpu") ํ•ด์ค„ ํ•„์š” ์—†์Œ
44
- gen = trans_model.generate(
45
- **batch, max_length=max_length
46
- )
47
- return trans_tokenizer.batch_decode(gen, skip_special_tokens=True)[0]
48
 
49
  # ---------------- Encoders ----------------
50
 
@@ -56,19 +32,11 @@ class HFEmbedder(nn.Module):
56
  self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
57
 
58
  if self.is_clip:
59
- self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
60
- version, max_length=max_length
61
- )
62
- self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(
63
- version, **hf_kwargs
64
- )
65
  else:
66
- self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(
67
- version, max_length=max_length
68
- )
69
- self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(
70
- version, **hf_kwargs
71
- )
72
 
73
  self.hf_module = self.hf_module.eval().requires_grad_(False)
74
 
@@ -77,9 +45,12 @@ class HFEmbedder(nn.Module):
77
  text,
78
  truncation=True,
79
  max_length=self.max_length,
 
 
80
  padding="max_length",
81
  return_tensors="pt",
82
  )
 
83
  outputs = self.hf_module(
84
  input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
85
  attention_mask=None,
@@ -87,35 +58,24 @@ class HFEmbedder(nn.Module):
87
  )
88
  return outputs[self.output_key]
89
 
90
- # T5, CLIP, VAE ๋ชจ๋‘ GPU/CPU(device)๋กœ ์ด๋™
91
- t5 = HFEmbedder(
92
- "DeepFloyd/t5-v1_1-xxl",
93
- max_length=512,
94
- torch_dtype=torch.bfloat16
95
- ).to(torch_device)
96
- clip = HFEmbedder(
97
- "openai/clip-vit-large-patch14",
98
- max_length=77,
99
- torch_dtype=torch.bfloat16
100
- ).to(torch_device)
101
- ae = AutoencoderKL.from_pretrained(
102
- "black-forest-labs/FLUX.1-dev",
103
- subfolder="vae",
104
- torch_dtype=torch.bfloat16
105
- ).to(torch_device)
106
-
107
- # ---------------- NF4 ์ง€์› ์ฝ”๋“œ ----------------
108
 
109
  def functional_linear_4bits(x, weight, bias):
110
- out = bnb.matmul_4bit(
111
- x, weight.t(), bias=bias, quant_state=weight.quant_state
112
- )
113
- return out.to(x)
114
 
115
  def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
116
  if state is None:
117
  return None
 
118
  device = device or state.absmax.device
 
119
  state2 = (
120
  QuantState(
121
  absmax=state.state2.absmax.to(device),
@@ -128,6 +88,7 @@ def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantSta
128
  if state.nested
129
  else None
130
  )
 
131
  return QuantState(
132
  absmax=state.absmax.to(device),
133
  shape=state.shape,
@@ -141,26 +102,25 @@ def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantSta
141
 
142
  class ForgeParams4bit(Params4bit):
143
  def to(self, *args, **kwargs):
144
- device, dtype, non_blocking, _ = torch._C._nn._parse_to(*args, **kwargs)
145
  if device is not None and device.type == "cuda" and not self.bnb_quantized:
146
  return self._quantize(device)
147
- new = ForgeParams4bit(
148
- torch.nn.Parameter.to(
149
- self, device=device, dtype=dtype, non_blocking=non_blocking
150
- ),
151
- requires_grad=self.requires_grad,
152
- quant_state=copy_quant_state(self.quant_state, device),
153
- compress_statistics=False,
154
- blocksize=self.blocksize,
155
- quant_type=self.quant_type,
156
- quant_storage=self.quant_storage,
157
- bnb_quantized=self.bnb_quantized,
158
- module=self.module,
159
- )
160
- self.module.quant_state = new.quant_state
161
- self.data = new.data
162
- self.quant_state = new.quant_state
163
- return new
164
 
165
  class ForgeLoader4Bit(torch.nn.Module):
166
  def __init__(self, *, device, dtype, quant_type, **kwargs):
@@ -171,154 +131,454 @@ class ForgeLoader4Bit(torch.nn.Module):
171
  self.bias = None
172
  self.quant_type = quant_type
173
 
174
- def _load_from_state_dict(
175
- self,
176
- state_dict,
177
- prefix,
178
- local_metadata,
179
- strict,
180
- missing_keys,
181
- unexpected_keys,
182
- error_msgs,
183
- ):
184
- qs_keys = {
185
- k[len(prefix + "weight.") :]
186
- for k in state_dict
187
- if k.startswith(prefix + "weight.")
188
- }
189
- if any("bitsandbytes" in k for k in qs_keys):
190
- qs = {
191
- k: state_dict[prefix + "weight." + k] for k in qs_keys
192
- }
193
  self.weight = ForgeParams4bit.from_prequantized(
194
- data=state_dict[prefix + "weight"],
195
- quantized_stats=qs,
196
  requires_grad=False,
197
- device=torch.device("cuda"),
198
- module=self,
199
  )
200
  self.quant_state = self.weight.quant_state
201
- if prefix + "bias" in state_dict:
202
- self.bias = torch.nn.Parameter(
203
- state_dict[prefix + "bias"].to(self.dummy)
 
 
 
 
 
 
 
 
 
 
 
204
  )
 
 
 
 
 
205
  del self.dummy
206
  else:
207
- super()._load_from_state_dict(
208
- state_dict,
209
- prefix,
210
- local_metadata,
211
- strict,
212
- missing_keys,
213
- unexpected_keys,
214
- error_msgs,
215
- )
216
 
217
  class Linear(ForgeLoader4Bit):
218
  def __init__(self, *args, device=None, dtype=None, **kwargs):
219
- super().__init__(device=device, dtype=dtype, quant_type="nf4")
220
 
221
  def forward(self, x):
222
  self.weight.quant_state = self.quant_state
 
223
  if self.bias is not None and self.bias.dtype != x.dtype:
224
  self.bias.data = self.bias.data.to(x.dtype)
 
225
  return functional_linear_4bits(x, self.weight, self.bias)
226
 
227
  nn.Linear = Linear
228
 
229
- # ---------------- Flux ๋ชจ๋ธ ์ •์˜ (์›๋ณธ ๊ทธ๋Œ€๋กœ) ----------------
230
 
231
  def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
232
- # ... (์ƒ๋žต ์—†์ด ์›๋ณธ ์ฝ”๋“œ ๊ทธ๋Œ€๋กœ)
233
  q, k = apply_rope(q, k, pe)
234
  x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
235
  x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
236
  return x
237
 
238
- # apply_rope, rope, EmbedND, timestep_embedding, MLPEmbedder, RMSNorm, QKNorm,
239
- # SelfAttention, Modulation, DoubleStreamBlock, SingleStreamBlock,
240
- # LastLayer, FluxParams, Flux ํด๋ž˜์Šค๊นŒ์ง€ ์ „๋ถ€ ์›๋ณธ๊ณผ ๋™์ผํ•˜๊ฒŒ ํฌํ•จํ•˜์„ธ์š”.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
- # ---------------- ๋ชจ๋ธ ๋กœ๋“œ ----------------
 
243
 
244
- sd = load_file(
245
- hf_hub_download(
246
- repo_id="lllyasviel/flux1-dev-bnb-nf4",
247
- filename="flux1-dev-bnb-nf4-v2.safetensors",
248
- )
249
- )
250
- sd = {
251
- k.replace("model.diffusion_model.", ""): v
252
- for k, v in sd.items()
253
- if "model.diffusion_model" in k
254
- }
255
-
256
- model = Flux().to(torch_device, dtype=torch.bfloat16)
257
- model.load_state_dict(sd)
258
- model_zero_init = False
259
 
260
- # ---------------- ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜ ----------------
 
 
 
 
261
 
262
- def get_image(image) -> torch.Tensor | None:
263
- if image is None:
264
- return None
265
- image = Image.fromarray(image).convert("RGB")
266
- tfm = transforms.Compose(
267
- [
268
- transforms.ToTensor(),
269
- transforms.Lambda(lambda x: 2.0 * x - 1.0),
270
- ]
271
- )
272
- return tfm(image)[None, ...]
273
 
274
- def prepare(t5, clip, img, prompt):
275
- bs, c, h, w = img.shape
276
- img = rearrange(
277
- img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2
278
- )
279
- if bs == 1 and isinstance(prompt, list):
280
- img = repeat(img, "1 ... -> bs ...", bs=len(prompt))
281
- img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device)
282
- img_ids[..., 1] = torch.arange(h // 2, device=img.device)[:, None]
283
- img_ids[..., 2] = torch.arange(w // 2, device=img.device)[None, :]
284
- img_ids = repeat(img_ids, "h w c -> b (h w) c", b=img.shape[0])
285
-
286
- txt = t5([prompt] if isinstance(prompt, str) else prompt)
287
- if txt.shape[0] == 1 and img.shape[0] > 1:
288
- txt = repeat(txt, "1 ... -> bs ...", bs=img.shape[0])
289
- txt_ids = torch.zeros(txt.size(0), txt.size(1), 3, device=img.device)
290
-
291
- vec = clip([prompt] if isinstance(prompt, str) else prompt)
292
- if vec.shape[0] == 1 and img.shape[0] > 1:
293
- vec = repeat(vec, "1 ... -> bs ...", bs=img.shape[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
  return {
296
  "img": img,
297
- "img_ids": img_ids,
298
- "txt": txt,
299
- "txt_ids": txt_ids,
300
- "vec": vec,
301
  }
302
 
303
- def get_schedule(num_steps, image_seq_len, base_shift=0.5, max_shift=1.15, shift=True):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
  timesteps = torch.linspace(1, 0, num_steps + 1)
305
  if shift:
306
- mu = ((max_shift - base_shift) / (4096 - 256)) * image_seq_len + (
307
- base_shift - (256 * (max_shift - base_shift) / (4096 - 256))
308
- )
309
- timesteps = timesteps.exp().div((1 / timesteps - 1) ** 1 + mu)
310
  return timesteps.tolist()
311
 
312
- def denoise(model, img, img_ids, txt, txt_ids, vec, timesteps, guidance):
313
- guidance_vec = torch.full(
314
- (img.size(0),), guidance, device=img.device, dtype=img.dtype
315
- )
316
- for t_curr, t_prev in tqdm(
317
- zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1
318
- ):
319
- t_vec = torch.full(
320
- (img.size(0),), t_curr, device=img.device, dtype=img.dtype
321
- )
 
 
 
322
  pred = model(
323
  img=img,
324
  img_ids=img_ids,
@@ -331,155 +591,152 @@ def denoise(model, img, img_ids, txt, txt_ids, vec, timesteps, guidance):
331
  img = img + (t_prev - t_curr) * pred
332
  return img
333
 
334
- # ---------------- Gradio ๋ฐ๋ชจ ----------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
 
336
  @spaces.GPU
337
  @torch.no_grad()
338
  def generate_image(
339
- prompt,
340
- width,
341
- height,
342
- guidance,
343
- inference_steps,
344
- seed,
345
- do_img2img,
346
- init_image,
347
- image2image_strength,
348
- resize_img,
349
  progress=gr.Progress(track_tqdm=True),
350
  ):
351
- # ํ•œ๊ธ€ ๊ฐ์ง€ ์‹œ CPU ๋ฒˆ์—ญ๊ธฐ ์‚ฌ์šฉ
352
- if any("\u3131" <= c <= "\u318E" or "\uAC00" <= c <= "\uD7A3" for c in prompt):
353
- prompt = translate_ko_to_en(prompt)
354
-
355
  if seed == 0:
356
- seed = random.randint(1, 1_000_000)
357
-
358
- global model_zero_init, model
 
 
 
359
  if not model_zero_init:
360
  model = model.to(torch_device)
361
  model_zero_init = True
362
-
363
  if do_img2img and init_image is not None:
364
- init_img = get_image(init_image)
365
  if resize_img:
366
- init_img = torch.nn.functional.interpolate(
367
- init_img, (height, width)
368
- )
369
  else:
370
- h0, w0 = init_img.shape[-2:]
371
- init_img = init_img[..., : 16 * (h0 // 16), : 16 * (w0 // 16)]
372
- height, width = init_img.shape[-2:]
373
- init_img = ae.encode(
374
- init_img.to(torch_device).to(torch.bfloat16)
375
- ).latent_dist.sample()
376
- init_img = (
377
- init_img - ae.config.shift_factor
378
- ) * ae.config.scaling_factor
379
- else:
380
- init_img = None
381
-
382
- generator = torch.Generator(device=str(torch_device)).manual_seed(seed)
383
  x = torch.randn(
384
  1,
385
  16,
386
  2 * math.ceil(height / 16),
387
  2 * math.ceil(width / 16),
388
- device=torch_device,
389
  dtype=torch.bfloat16,
390
- generator=generator,
391
- )
392
- timesteps = get_schedule(
393
- inference_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True
394
  )
395
- if do_img2img and init_img is not None:
396
- t_idx = int((1 - image2image_strength) * inference_steps)
 
 
 
 
397
  t = timesteps[t_idx]
398
  timesteps = timesteps[t_idx:]
399
- x = t * x + (1 - t) * init_img.to(x.dtype)
400
 
401
- inp = prepare(t5, clip, x, prompt)
402
  x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
403
-
404
- x = rearrange(
405
- x[:, inp["txt"].shape[1] :, ...].float(),
406
- "b (h w) (c ph pw) -> b c (h ph) (w pw)",
407
- h=math.ceil(height / 16),
408
- w=math.ceil(width / 16),
409
- ph=2,
410
- pw=2,
411
- )
412
  with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
413
  x = (x / ae.config.scaling_factor) + ae.config.shift_factor
414
  x = ae.decode(x).sample
415
-
416
  x = x.clamp(-1, 1)
417
- img = Image.fromarray(
418
- (127.5 * (rearrange(x[0], "c h w -> h w c") + 1.0))
419
- .cpu()
420
- .byte()
421
- .numpy()
422
- )
423
-
424
  return img, seed
425
 
426
- css = """
427
- footer {
428
- visibility: hidden;
429
- }
430
- """
431
-
432
  def create_demo():
433
- with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
434
- gr.Markdown(
435
- "# News! Multilingual version "
436
- "[https://huggingface.co/spaces/ginigen/FLUXllama-Multilingual]"
437
- "(https://huggingface.co/spaces/ginigen/FLUXllama-Multilingual)"
 
 
 
 
438
  )
439
  with gr.Row():
440
  with gr.Column():
441
- prompt = gr.Textbox(
442
- label="Prompt(ํ•œ๊ธ€ ๊ฐ€๋Šฅ)",
443
- value="A cute and fluffy golden retriever puppy sitting upright...",
444
- )
445
- width = gr.Slider(128, 2048, 64, label="Width", value=768)
446
- height = gr.Slider(128, 2048, 64, label="Height", value=768)
447
- guidance = gr.Slider(1.0, 5.0, 0.1, label="Guidance", value=3.5)
448
- steps = gr.Slider(1, 30, 1, label="Inference steps", value=30)
449
- seed = gr.Number(label="Seed", precision=0)
450
- do_i2i = gr.Checkbox(label="Image to Image", value=False)
451
- init_img = gr.Image(label="Input Image", visible=False)
452
- strength = gr.Slider(
453
- 0.0, 1.0, 0.01, label="Noising strength", value=0.8, visible=False
454
  )
455
- resize = gr.Checkbox(label="Resize image", value=True, visible=False)
456
- btn = gr.Button("Generate")
 
 
 
 
457
  with gr.Column():
458
- out_img = gr.Image(label="Generated Image")
459
- out_seed = gr.Text(label="Used Seed")
460
 
461
- do_i2i.change(
462
- fn=lambda x: [gr.update(visible=x)] * 3,
463
- inputs=[do_i2i],
464
- outputs=[init_img, strength, resize],
465
  )
466
- btn.click(
 
467
  fn=generate_image,
468
- inputs=[
469
- prompt,
470
- width,
471
- height,
472
- guidance,
473
- steps,
474
- seed,
475
- do_i2i,
476
- init_img,
477
- strength,
478
- resize,
479
- ],
480
- outputs=[out_img, out_seed],
481
  )
482
  return demo
483
 
484
  if __name__ == "__main__":
485
- create_demo().launch()
 
 
1
  import os
2
  import spaces
3
+
4
  import time
5
  import gradio as gr
6
  import torch
 
7
  from PIL import Image
8
  from torchvision import transforms
9
  from dataclasses import dataclass
10
  import math
11
  from typing import Callable
12
+
13
  from tqdm import tqdm
14
  import bitsandbytes as bnb
15
  from bitsandbytes.nn.modules import Params4bit, QuantState
 
 
 
 
 
 
 
 
 
 
16
 
17
+ import torch
18
+ import random
19
+ from einops import rearrange, repeat
20
+ from diffusers import AutoencoderKL
21
+ from torch import Tensor, nn
22
+ from transformers import CLIPTextModel, CLIPTokenizer
23
+ from transformers import T5EncoderModel, T5Tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  # ---------------- Encoders ----------------
26
 
 
32
  self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
33
 
34
  if self.is_clip:
35
+ self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
36
+ self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
 
 
 
 
37
  else:
38
+ self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
39
+ self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
 
 
 
 
40
 
41
  self.hf_module = self.hf_module.eval().requires_grad_(False)
42
 
 
45
  text,
46
  truncation=True,
47
  max_length=self.max_length,
48
+ return_length=False,
49
+ return_overflowing_tokens=False,
50
  padding="max_length",
51
  return_tensors="pt",
52
  )
53
+
54
  outputs = self.hf_module(
55
  input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
56
  attention_mask=None,
 
58
  )
59
  return outputs[self.output_key]
60
 
61
+ device = "cuda"
62
+ t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
63
+ clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
64
+ ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
65
+
66
+ # ---------------- NF4 ----------------
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  def functional_linear_4bits(x, weight, bias):
69
+ out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
70
+ out = out.to(x)
71
+ return out
 
72
 
73
  def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
74
  if state is None:
75
  return None
76
+
77
  device = device or state.absmax.device
78
+
79
  state2 = (
80
  QuantState(
81
  absmax=state.state2.absmax.to(device),
 
88
  if state.nested
89
  else None
90
  )
91
+
92
  return QuantState(
93
  absmax=state.absmax.to(device),
94
  shape=state.shape,
 
102
 
103
  class ForgeParams4bit(Params4bit):
104
  def to(self, *args, **kwargs):
105
+ device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
106
  if device is not None and device.type == "cuda" and not self.bnb_quantized:
107
  return self._quantize(device)
108
+ else:
109
+ n = ForgeParams4bit(
110
+ torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
111
+ requires_grad=self.requires_grad,
112
+ quant_state=copy_quant_state(self.quant_state, device),
113
+ compress_statistics=False,
114
+ blocksize=64,
115
+ quant_type=self.quant_type,
116
+ quant_storage=self.quant_storage,
117
+ bnb_quantized=self.bnb_quantized,
118
+ module=self.module
119
+ )
120
+ self.module.quant_state = n.quant_state
121
+ self.data = n.data
122
+ self.quant_state = n.quant_state
123
+ return n
 
124
 
125
  class ForgeLoader4Bit(torch.nn.Module):
126
  def __init__(self, *, device, dtype, quant_type, **kwargs):
 
131
  self.bias = None
132
  self.quant_type = quant_type
133
 
134
+ def _save_to_state_dict(self, destination, prefix, keep_vars):
135
+ super()._save_to_state_dict(destination, prefix, keep_vars)
136
+ quant_state = getattr(self.weight, "quant_state", None)
137
+ if quant_state is not None:
138
+ for k, v in quant_state.as_dict(packed=True).items():
139
+ destination[prefix + "weight." + k] = v if keep_vars else v.detach()
140
+ return
141
+
142
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
143
+ quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
144
+
145
+ if any('bitsandbytes' in k for k in quant_state_keys):
146
+ quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
147
+
 
 
 
 
 
148
  self.weight = ForgeParams4bit.from_prequantized(
149
+ data=state_dict[prefix + 'weight'],
150
+ quantized_stats=quant_state_dict,
151
  requires_grad=False,
152
+ device=torch.device('cuda'),
153
+ module=self
154
  )
155
  self.quant_state = self.weight.quant_state
156
+
157
+ if prefix + 'bias' in state_dict:
158
+ self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
159
+
160
+ del self.dummy
161
+ elif hasattr(self, 'dummy'):
162
+ if prefix + 'weight' in state_dict:
163
+ self.weight = ForgeParams4bit(
164
+ state_dict[prefix + 'weight'].to(self.dummy),
165
+ requires_grad=False,
166
+ compress_statistics=True,
167
+ quant_type=self.quant_type,
168
+ quant_storage=torch.uint8,
169
+ module=self,
170
  )
171
+ self.quant_state = self.weight.quant_state
172
+
173
+ if prefix + 'bias' in state_dict:
174
+ self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
175
+
176
  del self.dummy
177
  else:
178
+ super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
 
 
 
 
 
 
 
 
179
 
180
  class Linear(ForgeLoader4Bit):
181
  def __init__(self, *args, device=None, dtype=None, **kwargs):
182
+ super().__init__(device=device, dtype=dtype, quant_type='nf4')
183
 
184
  def forward(self, x):
185
  self.weight.quant_state = self.quant_state
186
+
187
  if self.bias is not None and self.bias.dtype != x.dtype:
188
  self.bias.data = self.bias.data.to(x.dtype)
189
+
190
  return functional_linear_4bits(x, self.weight, self.bias)
191
 
192
  nn.Linear = Linear
193
 
194
+ # ---------------- Model ----------------
195
 
196
  def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
 
197
  q, k = apply_rope(q, k, pe)
198
  x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
199
  x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
200
  return x
201
 
202
+ def rope(pos, dim, theta):
203
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
204
+ omega = 1.0 / (theta ** scale)
205
+ out = pos.unsqueeze(-1) * omega.unsqueeze(0)
206
+ cos_out = torch.cos(out)
207
+ sin_out = torch.sin(out)
208
+ out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
209
+ b, n, d, _ = out.shape
210
+ out = out.view(b, n, d, 2, 2)
211
+ return out.float()
212
+
213
+ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
214
+ xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
215
+ xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
216
+ xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
217
+ xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
218
+ return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
219
+
220
+ class EmbedND(nn.Module):
221
+ def __init__(self, dim: int, theta: int, axes_dim: list[int]):
222
+ super().__init__()
223
+ self.dim = dim
224
+ self.theta = theta
225
+ self.axes_dim = axes_dim
226
+
227
+ def forward(self, ids: Tensor) -> Tensor:
228
+ n_axes = ids.shape[-1]
229
+ emb = torch.cat(
230
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
231
+ dim=-3,
232
+ )
233
+ return emb.unsqueeze(1)
234
+
235
+ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
236
+ t = time_factor * t
237
+ half = dim // 2
238
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
239
+ args = t[:, None].float() * freqs[None]
240
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
241
+ if dim % 2:
242
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
243
+ if torch.is_floating_point(t):
244
+ embedding = embedding.to(t)
245
+ return embedding
246
+
247
+ class MLPEmbedder(nn.Module):
248
+ def __init__(self, in_dim: int, hidden_dim: int):
249
+ super().__init__()
250
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
251
+ self.silu = nn.SiLU()
252
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
253
 
254
+ def forward(self, x: Tensor) -> Tensor:
255
+ return self.out_layer(self.silu(self.in_layer(x)))
256
 
257
+ class RMSNorm(torch.nn.Module):
258
+ def __init__(self, dim: int):
259
+ super().__init__()
260
+ self.scale = nn.Parameter(torch.ones(dim))
 
 
 
 
 
 
 
 
 
 
 
261
 
262
+ def forward(self, x: Tensor):
263
+ x_dtype = x.dtype
264
+ x = x.float()
265
+ rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
266
+ return (x * rrms).to(dtype=x_dtype) * self.scale
267
 
268
+ class QKNorm(torch.nn.Module):
269
+ def __init__(self, dim: int):
270
+ super().__init__()
271
+ self.query_norm = RMSNorm(dim)
272
+ self.key_norm = RMSNorm(dim)
 
 
 
 
 
 
273
 
274
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
275
+ q = self.query_norm(q)
276
+ k = self.key_norm(k)
277
+ return q.to(v), k.to(v)
278
+
279
+ class SelfAttention(nn.Module):
280
+ def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
281
+ super().__init__()
282
+ self.num_heads = num_heads
283
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
284
+ head_dim = dim // num_heads
285
+ self.norm = QKNorm(head_dim)
286
+ self.proj = nn.Linear(dim, dim)
287
+
288
+ def forward(self, x: Tensor, pe: Tensor) -> Tensor:
289
+ qkv = self.qkv(x)
290
+ B, L, _ = qkv.shape
291
+ qkv = qkv.view(B, L, 3, self.num_heads, -1)
292
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
293
+ q, k = self.norm(q, k, v)
294
+ x = attention(q, k, v, pe=pe)
295
+ x = self.proj(x)
296
+ return x
297
+
298
+ @dataclass
299
+ class ModulationOut:
300
+ shift: Tensor
301
+ scale: Tensor
302
+ gate: Tensor
303
+
304
+ class Modulation(nn.Module):
305
+ def __init__(self, dim: int, double: bool):
306
+ super().__init__()
307
+ self.is_double = double
308
+ self.multiplier = 6 if double else 3
309
+ self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
310
+
311
+ def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
312
+ out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
313
+ return (
314
+ ModulationOut(*out[:3]),
315
+ ModulationOut(*out[3:]) if self.is_double else None,
316
+ )
317
+
318
+ class DoubleStreamBlock(nn.Module):
319
+ def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
320
+ super().__init__()
321
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
322
+ self.num_heads = num_heads
323
+ self.hidden_size = hidden_size
324
+ self.img_mod = Modulation(hidden_size, double=True)
325
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
326
+ self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
327
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
328
+ self.img_mlp = nn.Sequential(
329
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
330
+ nn.GELU(approximate="tanh"),
331
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
332
+ )
333
+ self.txt_mod = Modulation(hidden_size, double=True)
334
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
335
+ self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
336
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
337
+ self.txt_mlp = nn.Sequential(
338
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
339
+ nn.GELU(approximate="tanh"),
340
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
341
+ )
342
+
343
+ def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
344
+ img_mod1, img_mod2 = self.img_mod(vec)
345
+ txt_mod1, txt_mod2 = self.txt_mod(vec)
346
+
347
+ # Image attention
348
+ img_modulated = self.img_norm1(img)
349
+ img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
350
+ img_qkv = self.img_attn.qkv(img_modulated)
351
+ B, L, _ = img_qkv.shape
352
+ H = self.num_heads
353
+ D = img_qkv.shape[-1] // (3 * H)
354
+ img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
355
+ img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
356
+
357
+ # Text attention
358
+ txt_modulated = self.txt_norm1(txt)
359
+ txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
360
+ txt_qkv = self.txt_attn.qkv(txt_modulated)
361
+ B, L, _ = txt_qkv.shape
362
+ txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
363
+ txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
364
+
365
+ # Combined attention
366
+ q = torch.cat((txt_q, img_q), dim=2)
367
+ k = torch.cat((txt_k, img_k), dim=2)
368
+ v = torch.cat((txt_v, img_v), dim=2)
369
+ attn = attention(q, k, v, pe=pe)
370
+ txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
371
+
372
+ # Img final
373
+ img = img + img_mod1.gate * self.img_attn.proj(img_attn)
374
+ img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
375
+
376
+ # Text final
377
+ txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
378
+ txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
379
+ return img, txt
380
+
381
+ class SingleStreamBlock(nn.Module):
382
+ def __init__(
383
+ self,
384
+ hidden_size: int,
385
+ num_heads: int,
386
+ mlp_ratio: float = 4.0,
387
+ qk_scale: float | None = None,
388
+ ):
389
+ super().__init__()
390
+ self.hidden_dim = hidden_size
391
+ self.num_heads = num_heads
392
+ head_dim = hidden_size // num_heads
393
+ self.scale = qk_scale or head_dim**-0.5
394
+ self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
395
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
396
+ self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
397
+ self.norm = QKNorm(head_dim)
398
+ self.hidden_size = hidden_size
399
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
400
+ self.mlp_act = nn.GELU(approximate="tanh")
401
+ self.modulation = Modulation(hidden_size, double=False)
402
+
403
+ def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
404
+ mod, _ = self.modulation(vec)
405
+ x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
406
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
407
+ qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
408
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
409
+ q, k = self.norm(q, k, v)
410
+ attn = attention(q, k, v, pe=pe)
411
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
412
+ return x + mod.gate * output
413
+
414
+ class LastLayer(nn.Module):
415
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
416
+ super().__init__()
417
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
418
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
419
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
420
+
421
+ def forward(self, x: Tensor, vec: Tensor) -> Tensor:
422
+ shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
423
+ x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
424
+ x = self.linear(x)
425
+ return x
426
+
427
+ @dataclass
428
+ class FluxParams:
429
+ in_channels: int = 64
430
+ vec_in_dim: int = 768
431
+ context_in_dim: int = 4096
432
+ hidden_size: int = 3072
433
+ mlp_ratio: float = 4.0
434
+ num_heads: int = 24
435
+ depth: int = 19
436
+ depth_single_blocks: int = 38
437
+ axes_dim: list = [16, 56, 56]
438
+ theta: int = 10000
439
+ qkv_bias: bool = True
440
+ guidance_embed: bool = True
441
+
442
+ class Flux(nn.Module):
443
+ def __init__(self, params = FluxParams()):
444
+ super().__init__()
445
+ self.params = params
446
+ self.in_channels = params.in_channels
447
+ self.out_channels = self.in_channels
448
+ if params.hidden_size % params.num_heads != 0:
449
+ raise ValueError(
450
+ f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
451
+ )
452
+ pe_dim = params.hidden_size // params.num_heads
453
+ if sum(params.axes_dim) != pe_dim:
454
+ raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
455
+ self.hidden_size = params.hidden_size
456
+ self.num_heads = params.num_heads
457
+ self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
458
+ self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
459
+ self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
460
+ self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
461
+ self.guidance_in = (
462
+ MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
463
+ )
464
+ self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
465
+
466
+ self.double_blocks = nn.ModuleList(
467
+ [
468
+ DoubleStreamBlock(
469
+ self.hidden_size,
470
+ self.num_heads,
471
+ mlp_ratio=params.mlp_ratio,
472
+ qkv_bias=params.qkv_bias,
473
+ )
474
+ for _ in range(params.depth)
475
+ ]
476
+ )
477
+
478
+ self.single_blocks = nn.ModuleList(
479
+ [
480
+ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
481
+ for _ in range(params.depth_single_blocks)
482
+ ]
483
+ )
484
+
485
+ self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
486
 
487
+ def forward(
488
+ self,
489
+ img: Tensor,
490
+ img_ids: Tensor,
491
+ txt: Tensor,
492
+ txt_ids: Tensor,
493
+ timesteps: Tensor,
494
+ y: Tensor,
495
+ guidance: Tensor | None = None,
496
+ ) -> Tensor:
497
+ if img.ndim != 3 or txt.ndim != 3:
498
+ raise ValueError("Input img and txt tensors must have 3 dimensions.")
499
+ img = self.img_in(img)
500
+ vec = self.time_in(timestep_embedding(timesteps, 256))
501
+ if self.params.guidance_embed:
502
+ if guidance is None:
503
+ raise ValueError("No guidance strength provided for guidance-distilled model.")
504
+ vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
505
+ vec = vec + self.vector_in(y)
506
+ txt = self.txt_in(txt)
507
+ ids = torch.cat((txt_ids, img_ids), dim=1)
508
+ pe = self.pe_embedder(ids)
509
+ for block in self.double_blocks:
510
+ img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
511
+ img = torch.cat((txt, img), 1)
512
+ for block in self.single_blocks:
513
+ img = block(img, vec=vec, pe=pe)
514
+ img = img[:, txt.shape[1] :, ...]
515
+ img = self.final_layer(img, vec)
516
+ return img
517
+
518
+ def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
519
+ bs, c, h, w = img.shape
520
+ if bs == 1 and not isinstance(prompt, str):
521
+ bs = len(prompt)
522
+ img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
523
+ if img.shape[0] == 1 and bs > 1:
524
+ img = repeat(img, "1 ... -> bs ...", bs=bs)
525
+ img_ids = torch.zeros(h // 2, w // 2, 3)
526
+ img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
527
+ img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
528
+ img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
529
+ if isinstance(prompt, str):
530
+ prompt = [prompt]
531
+ txt = t5(prompt)
532
+ if txt.shape[0] == 1 and bs > 1:
533
+ txt = repeat(txt, "1 ... -> bs ...", bs=bs)
534
+ txt_ids = torch.zeros(bs, txt.shape[1], 3)
535
+ vec = clip(prompt)
536
+ if vec.shape[0] == 1 and bs > 1:
537
+ vec = repeat(vec, "1 ... -> bs ...", bs=bs)
538
  return {
539
  "img": img,
540
+ "img_ids": img_ids.to(img.device),
541
+ "txt": txt.to(img.device),
542
+ "txt_ids": txt_ids.to(img.device),
543
+ "vec": vec.to(img.device),
544
  }
545
 
546
+ def time_shift(mu: float, sigma: float, t: Tensor):
547
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
548
+
549
+ def get_lin_function(
550
+ x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
551
+ ) -> Callable[[float], float]:
552
+ m = (y2 - y1) / (x2 - x1)
553
+ b = y1 - m * x1
554
+ return lambda x: m * x + b
555
+
556
+ def get_schedule(
557
+ num_steps: int,
558
+ image_seq_len: int,
559
+ base_shift: float = 0.5,
560
+ max_shift: float = 1.15,
561
+ shift: bool = True,
562
+ ) -> list[float]:
563
  timesteps = torch.linspace(1, 0, num_steps + 1)
564
  if shift:
565
+ mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
566
+ timesteps = time_shift(mu, 1.0, timesteps)
 
 
567
  return timesteps.tolist()
568
 
569
+ def denoise(
570
+ model: Flux,
571
+ img: Tensor,
572
+ img_ids: Tensor,
573
+ txt: Tensor,
574
+ txt_ids: Tensor,
575
+ vec: Tensor,
576
+ timesteps: list[float],
577
+ guidance: float = 4.0,
578
+ ):
579
+ guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
580
+ for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
581
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
582
  pred = model(
583
  img=img,
584
  img_ids=img_ids,
 
591
  img = img + (t_prev - t_curr) * pred
592
  return img
593
 
594
+ def unpack(x: Tensor, height: int, width: int) -> Tensor:
595
+ return rearrange(
596
+ x,
597
+ "b (h w) (c ph pw) -> b c (h ph) (w pw)",
598
+ h=math.ceil(height / 16),
599
+ w=math.ceil(width / 16),
600
+ ph=2,
601
+ pw=2,
602
+ )
603
+
604
+ @dataclass
605
+ class SamplingOptions:
606
+ prompt: str
607
+ width: int
608
+ height: int
609
+ guidance: float
610
+ seed: int | None
611
+
612
+ def get_image(image) -> torch.Tensor | None:
613
+ if image is None:
614
+ return None
615
+ image = Image.fromarray(image).convert("RGB")
616
+ transform = transforms.Compose([
617
+ transforms.ToTensor(),
618
+ transforms.Lambda(lambda x: 2.0 * x - 1.0),
619
+ ])
620
+ img: torch.Tensor = transform(image)
621
+ return img[None, ...]
622
+
623
+ from huggingface_hub import hf_hub_download
624
+ from safetensors.torch import load_file
625
+
626
+ sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors"))
627
+ sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
628
+ model = Flux().to(dtype=torch.bfloat16, device="cuda")
629
+ result = model.load_state_dict(sd)
630
+ model_zero_init = False
631
 
632
  @spaces.GPU
633
  @torch.no_grad()
634
  def generate_image(
635
+ prompt, width, height, guidance, inference_steps, seed,
636
+ do_img2img, init_image, image2image_strength, resize_img,
 
 
 
 
 
 
 
 
637
  progress=gr.Progress(track_tqdm=True),
638
  ):
 
 
 
 
639
  if seed == 0:
640
+ seed = int(random.random() * 1000000)
641
+
642
+ device = "cuda" if torch.cuda.is_available() else "cpu"
643
+ torch_device = torch.device(device)
644
+
645
+ global model, model_zero_init
646
  if not model_zero_init:
647
  model = model.to(torch_device)
648
  model_zero_init = True
649
+
650
  if do_img2img and init_image is not None:
651
+ init_image = get_image(init_image)
652
  if resize_img:
653
+ init_image = torch.nn.functional.interpolate(init_image, (height, width))
 
 
654
  else:
655
+ h, w = init_image.shape[-2:]
656
+ init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
657
+ height = init_image.shape[-2]
658
+ width = init_image.shape[-1]
659
+ init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
660
+ init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
661
+
662
+ generator = torch.Generator(device=device).manual_seed(seed)
 
 
 
 
 
663
  x = torch.randn(
664
  1,
665
  16,
666
  2 * math.ceil(height / 16),
667
  2 * math.ceil(width / 16),
668
+ device=device,
669
  dtype=torch.bfloat16,
670
+ generator=generator
 
 
 
671
  )
672
+
673
+ num_steps = inference_steps
674
+ timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
675
+
676
+ if do_img2img and init_image is not None:
677
+ t_idx = int((1 - image2image_strength) * num_steps)
678
  t = timesteps[t_idx]
679
  timesteps = timesteps[t_idx:]
680
+ x = t * x + (1.0 - t) * init_image.to(x.dtype)
681
 
682
+ inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
683
  x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
684
+ x = unpack(x.float(), height, width)
 
 
 
 
 
 
 
 
685
  with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
686
  x = (x / ae.config.scaling_factor) + ae.config.shift_factor
687
  x = ae.decode(x).sample
 
688
  x = x.clamp(-1, 1)
689
+ x = rearrange(x[0], "c h w -> h w c")
690
+ img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
 
 
 
 
 
691
  return img, seed
692
 
 
 
 
 
 
 
693
  def create_demo():
694
+ with gr.Blocks(css=".gradio-container {background-color: #282828 !important;}") as demo:
695
+ gr.HTML(
696
+ """
697
+ <div style="text-align: center; margin: 0 auto;">
698
+ <h1 style="color: #ffffff; font-weight: 900;">
699
+ FluxLLama
700
+ </h1>
701
+ </div>
702
+ """
703
  )
704
  with gr.Row():
705
  with gr.Column():
706
+ prompt = gr.Textbox(label="Prompt", value="A majestic castle on top of a floating island")
707
+ width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=640)
708
+ height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=640)
709
+ guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
710
+ inference_steps = gr.Slider(
711
+ label="Inference steps",
712
+ minimum=1,
713
+ maximum=30,
714
+ step=1,
715
+ value=16,
 
 
 
716
  )
717
+ seed = gr.Number(label="Seed", precision=-1)
718
+ do_img2img = gr.Checkbox(label="Image to Image", value=False)
719
+ init_image = gr.Image(label="Initial Image", visible=False)
720
+ image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising Strength", value=0.8, visible=False)
721
+ resize_img = gr.Checkbox(label="Resize Initial Image", value=True, visible=False)
722
+ generate_button = gr.Button("Generate", variant="primary")
723
  with gr.Column():
724
+ output_image = gr.Image(label="Result")
725
+ output_seed = gr.Text(label="Seed Used")
726
 
727
+ do_img2img.change(
728
+ fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
729
+ inputs=[do_img2img],
730
+ outputs=[init_image, image2image_strength, resize_img]
731
  )
732
+
733
+ generate_button.click(
734
  fn=generate_image,
735
+ inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img],
736
+ outputs=[output_image, output_seed]
 
 
 
 
 
 
 
 
 
 
 
737
  )
738
  return demo
739
 
740
  if __name__ == "__main__":
741
+ demo = create_demo()
742
+ demo.launch()