Spaces:
Running
on
Zero
Running
on
Zero
Delete app-backup-60s.py
Browse files- app-backup-60s.py +0 -724
app-backup-60s.py
DELETED
@@ -1,724 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
os.environ['HF_HOME'] = os.path.abspath(
|
4 |
-
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
5 |
-
)
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
import torch
|
9 |
-
import traceback
|
10 |
-
import einops
|
11 |
-
import safetensors.torch as sf
|
12 |
-
import numpy as np
|
13 |
-
import math
|
14 |
-
import spaces
|
15 |
-
|
16 |
-
from PIL import Image
|
17 |
-
from diffusers import AutoencoderKLHunyuanVideo
|
18 |
-
from transformers import (
|
19 |
-
LlamaModel, CLIPTextModel,
|
20 |
-
LlamaTokenizerFast, CLIPTokenizer
|
21 |
-
)
|
22 |
-
from diffusers_helper.hunyuan import (
|
23 |
-
encode_prompt_conds, vae_decode,
|
24 |
-
vae_encode, vae_decode_fake
|
25 |
-
)
|
26 |
-
from diffusers_helper.utils import (
|
27 |
-
save_bcthw_as_mp4, crop_or_pad_yield_mask,
|
28 |
-
soft_append_bcthw, resize_and_center_crop,
|
29 |
-
state_dict_weighted_merge, state_dict_offset_merge,
|
30 |
-
generate_timestamp
|
31 |
-
)
|
32 |
-
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
33 |
-
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
34 |
-
from diffusers_helper.memory import (
|
35 |
-
cpu, gpu,
|
36 |
-
get_cuda_free_memory_gb,
|
37 |
-
move_model_to_device_with_memory_preservation,
|
38 |
-
offload_model_from_device_for_memory_preservation,
|
39 |
-
fake_diffusers_current_device,
|
40 |
-
DynamicSwapInstaller,
|
41 |
-
unload_complete_models,
|
42 |
-
load_model_as_complete
|
43 |
-
)
|
44 |
-
from diffusers_helper.thread_utils import AsyncStream, async_run
|
45 |
-
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
46 |
-
from transformers import SiglipImageProcessor, SiglipVisionModel
|
47 |
-
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
48 |
-
from diffusers_helper.bucket_tools import find_nearest_bucket
|
49 |
-
|
50 |
-
# Check GPU memory
|
51 |
-
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
52 |
-
high_vram = free_mem_gb > 60
|
53 |
-
|
54 |
-
print(f'Free VRAM {free_mem_gb} GB')
|
55 |
-
print(f'High-VRAM Mode: {high_vram}')
|
56 |
-
|
57 |
-
# Load models
|
58 |
-
text_encoder = LlamaModel.from_pretrained(
|
59 |
-
"hunyuanvideo-community/HunyuanVideo",
|
60 |
-
subfolder='text_encoder',
|
61 |
-
torch_dtype=torch.float16
|
62 |
-
).cpu()
|
63 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
64 |
-
"hunyuanvideo-community/HunyuanVideo",
|
65 |
-
subfolder='text_encoder_2',
|
66 |
-
torch_dtype=torch.float16
|
67 |
-
).cpu()
|
68 |
-
tokenizer = LlamaTokenizerFast.from_pretrained(
|
69 |
-
"hunyuanvideo-community/HunyuanVideo",
|
70 |
-
subfolder='tokenizer'
|
71 |
-
)
|
72 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
73 |
-
"hunyuanvideo-community/HunyuanVideo",
|
74 |
-
subfolder='tokenizer_2'
|
75 |
-
)
|
76 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
77 |
-
"hunyuanvideo-community/HunyuanVideo",
|
78 |
-
subfolder='vae',
|
79 |
-
torch_dtype=torch.float16
|
80 |
-
).cpu()
|
81 |
-
|
82 |
-
feature_extractor = SiglipImageProcessor.from_pretrained(
|
83 |
-
"lllyasviel/flux_redux_bfl",
|
84 |
-
subfolder='feature_extractor'
|
85 |
-
)
|
86 |
-
image_encoder = SiglipVisionModel.from_pretrained(
|
87 |
-
"lllyasviel/flux_redux_bfl",
|
88 |
-
subfolder='image_encoder',
|
89 |
-
torch_dtype=torch.float16
|
90 |
-
).cpu()
|
91 |
-
|
92 |
-
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
93 |
-
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
94 |
-
torch_dtype=torch.bfloat16
|
95 |
-
).cpu()
|
96 |
-
|
97 |
-
# Evaluation mode
|
98 |
-
vae.eval()
|
99 |
-
text_encoder.eval()
|
100 |
-
text_encoder_2.eval()
|
101 |
-
image_encoder.eval()
|
102 |
-
transformer.eval()
|
103 |
-
|
104 |
-
# Slicing/Tiling for low VRAM
|
105 |
-
if not high_vram:
|
106 |
-
vae.enable_slicing()
|
107 |
-
vae.enable_tiling()
|
108 |
-
|
109 |
-
transformer.high_quality_fp32_output_for_inference = True
|
110 |
-
print('transformer.high_quality_fp32_output_for_inference = True')
|
111 |
-
|
112 |
-
# Move to correct dtype
|
113 |
-
transformer.to(dtype=torch.bfloat16)
|
114 |
-
vae.to(dtype=torch.float16)
|
115 |
-
image_encoder.to(dtype=torch.float16)
|
116 |
-
text_encoder.to(dtype=torch.float16)
|
117 |
-
text_encoder_2.to(dtype=torch.float16)
|
118 |
-
|
119 |
-
# No gradient
|
120 |
-
vae.requires_grad_(False)
|
121 |
-
text_encoder.requires_grad_(False)
|
122 |
-
text_encoder_2.requires_grad_(False)
|
123 |
-
image_encoder.requires_grad_(False)
|
124 |
-
transformer.requires_grad_(False)
|
125 |
-
|
126 |
-
# DynamicSwap if low VRAM
|
127 |
-
if not high_vram:
|
128 |
-
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
129 |
-
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
130 |
-
else:
|
131 |
-
text_encoder.to(gpu)
|
132 |
-
text_encoder_2.to(gpu)
|
133 |
-
image_encoder.to(gpu)
|
134 |
-
vae.to(gpu)
|
135 |
-
transformer.to(gpu)
|
136 |
-
|
137 |
-
stream = AsyncStream()
|
138 |
-
|
139 |
-
outputs_folder = './outputs/'
|
140 |
-
os.makedirs(outputs_folder, exist_ok=True)
|
141 |
-
|
142 |
-
examples = [
|
143 |
-
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
|
144 |
-
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
145 |
-
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
146 |
-
]
|
147 |
-
|
148 |
-
# Example generation (optional)
|
149 |
-
def generate_examples(input_image, prompt):
|
150 |
-
t2v=False
|
151 |
-
n_prompt=""
|
152 |
-
seed=31337
|
153 |
-
total_second_length=60
|
154 |
-
latent_window_size=9
|
155 |
-
steps=25
|
156 |
-
cfg=1.0
|
157 |
-
gs=10.0
|
158 |
-
rs=0.0
|
159 |
-
gpu_memory_preservation=6
|
160 |
-
use_teacache=True
|
161 |
-
mp4_crf=16
|
162 |
-
|
163 |
-
global stream
|
164 |
-
|
165 |
-
if t2v:
|
166 |
-
default_height, default_width = 640, 640
|
167 |
-
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
168 |
-
print("No input image provided. Using a blank white image.")
|
169 |
-
|
170 |
-
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
171 |
-
|
172 |
-
stream = AsyncStream()
|
173 |
-
|
174 |
-
async_run(
|
175 |
-
worker, input_image, prompt, n_prompt, seed,
|
176 |
-
total_second_length, latent_window_size, steps,
|
177 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
178 |
-
)
|
179 |
-
|
180 |
-
output_filename = None
|
181 |
-
|
182 |
-
while True:
|
183 |
-
flag, data = stream.output_queue.next()
|
184 |
-
|
185 |
-
if flag == 'file':
|
186 |
-
output_filename = data
|
187 |
-
yield (
|
188 |
-
output_filename,
|
189 |
-
gr.update(),
|
190 |
-
gr.update(),
|
191 |
-
gr.update(),
|
192 |
-
gr.update(interactive=False),
|
193 |
-
gr.update(interactive=True)
|
194 |
-
)
|
195 |
-
|
196 |
-
if flag == 'progress':
|
197 |
-
preview, desc, html = data
|
198 |
-
yield (
|
199 |
-
gr.update(),
|
200 |
-
gr.update(visible=True, value=preview),
|
201 |
-
desc,
|
202 |
-
html,
|
203 |
-
gr.update(interactive=False),
|
204 |
-
gr.update(interactive=True)
|
205 |
-
)
|
206 |
-
|
207 |
-
if flag == 'end':
|
208 |
-
yield (
|
209 |
-
output_filename,
|
210 |
-
gr.update(visible=False),
|
211 |
-
gr.update(),
|
212 |
-
'',
|
213 |
-
gr.update(interactive=True),
|
214 |
-
gr.update(interactive=False)
|
215 |
-
)
|
216 |
-
break
|
217 |
-
|
218 |
-
@torch.no_grad()
|
219 |
-
def worker(
|
220 |
-
input_image, prompt, n_prompt, seed,
|
221 |
-
total_second_length, latent_window_size, steps,
|
222 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
223 |
-
):
|
224 |
-
# Calculate total sections
|
225 |
-
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
226 |
-
total_latent_sections = int(max(round(total_latent_sections), 1))
|
227 |
-
|
228 |
-
job_id = generate_timestamp()
|
229 |
-
|
230 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
231 |
-
|
232 |
-
try:
|
233 |
-
# Unload if VRAM is low
|
234 |
-
if not high_vram:
|
235 |
-
unload_complete_models(
|
236 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
237 |
-
)
|
238 |
-
|
239 |
-
# Text encoding
|
240 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
241 |
-
|
242 |
-
if not high_vram:
|
243 |
-
fake_diffusers_current_device(text_encoder, gpu)
|
244 |
-
load_model_as_complete(text_encoder_2, target_device=gpu)
|
245 |
-
|
246 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
247 |
-
|
248 |
-
if cfg == 1:
|
249 |
-
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
250 |
-
else:
|
251 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
252 |
-
|
253 |
-
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
254 |
-
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
255 |
-
|
256 |
-
# Process image
|
257 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
258 |
-
|
259 |
-
H, W, C = input_image.shape
|
260 |
-
height, width = find_nearest_bucket(H, W, resolution=640)
|
261 |
-
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
262 |
-
|
263 |
-
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
264 |
-
|
265 |
-
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
266 |
-
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
267 |
-
|
268 |
-
# VAE encoding
|
269 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
270 |
-
|
271 |
-
if not high_vram:
|
272 |
-
load_model_as_complete(vae, target_device=gpu)
|
273 |
-
start_latent = vae_encode(input_image_pt, vae)
|
274 |
-
|
275 |
-
# CLIP Vision
|
276 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
277 |
-
|
278 |
-
if not high_vram:
|
279 |
-
load_model_as_complete(image_encoder, target_device=gpu)
|
280 |
-
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
281 |
-
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
282 |
-
|
283 |
-
# Convert dtype
|
284 |
-
llama_vec = llama_vec.to(transformer.dtype)
|
285 |
-
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
286 |
-
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
287 |
-
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
288 |
-
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
289 |
-
|
290 |
-
# Start sampling
|
291 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
292 |
-
|
293 |
-
rnd = torch.Generator("cpu").manual_seed(seed)
|
294 |
-
|
295 |
-
history_latents = torch.zeros(
|
296 |
-
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
|
297 |
-
dtype=torch.float32
|
298 |
-
).cpu()
|
299 |
-
history_pixels = None
|
300 |
-
|
301 |
-
# Add start_latent
|
302 |
-
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
303 |
-
total_generated_latent_frames = 1
|
304 |
-
|
305 |
-
for section_index in range(total_latent_sections):
|
306 |
-
if stream.input_queue.top() == 'end':
|
307 |
-
stream.output_queue.push(('end', None))
|
308 |
-
return
|
309 |
-
|
310 |
-
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
311 |
-
|
312 |
-
if not high_vram:
|
313 |
-
unload_complete_models()
|
314 |
-
move_model_to_device_with_memory_preservation(
|
315 |
-
transformer, target_device=gpu,
|
316 |
-
preserved_memory_gb=gpu_memory_preservation
|
317 |
-
)
|
318 |
-
|
319 |
-
if use_teacache:
|
320 |
-
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
321 |
-
else:
|
322 |
-
transformer.initialize_teacache(enable_teacache=False)
|
323 |
-
|
324 |
-
def callback(d):
|
325 |
-
preview = d['denoised']
|
326 |
-
preview = vae_decode_fake(preview)
|
327 |
-
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
328 |
-
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
329 |
-
|
330 |
-
if stream.input_queue.top() == 'end':
|
331 |
-
stream.output_queue.push(('end', None))
|
332 |
-
raise KeyboardInterrupt('User ends the task.')
|
333 |
-
|
334 |
-
current_step = d['i'] + 1
|
335 |
-
percentage = int(100.0 * current_step / steps)
|
336 |
-
hint = f'Sampling {current_step}/{steps}'
|
337 |
-
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
|
338 |
-
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
339 |
-
return
|
340 |
-
|
341 |
-
indices = torch.arange(
|
342 |
-
0, sum([1, 16, 2, 1, latent_window_size])
|
343 |
-
).unsqueeze(0)
|
344 |
-
(
|
345 |
-
clean_latent_indices_start,
|
346 |
-
clean_latent_4x_indices,
|
347 |
-
clean_latent_2x_indices,
|
348 |
-
clean_latent_1x_indices,
|
349 |
-
latent_indices
|
350 |
-
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
351 |
-
|
352 |
-
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
353 |
-
|
354 |
-
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
355 |
-
:, :, -sum([16, 2, 1]):, :, :
|
356 |
-
].split([16, 2, 1], dim=2)
|
357 |
-
|
358 |
-
clean_latents = torch.cat(
|
359 |
-
[start_latent.to(history_latents), clean_latents_1x],
|
360 |
-
dim=2
|
361 |
-
)
|
362 |
-
|
363 |
-
generated_latents = sample_hunyuan(
|
364 |
-
transformer=transformer,
|
365 |
-
sampler='unipc',
|
366 |
-
width=width,
|
367 |
-
height=height,
|
368 |
-
frames=latent_window_size * 4 - 3,
|
369 |
-
real_guidance_scale=cfg,
|
370 |
-
distilled_guidance_scale=gs,
|
371 |
-
guidance_rescale=rs,
|
372 |
-
num_inference_steps=steps,
|
373 |
-
generator=rnd,
|
374 |
-
prompt_embeds=llama_vec,
|
375 |
-
prompt_embeds_mask=llama_attention_mask,
|
376 |
-
prompt_poolers=clip_l_pooler,
|
377 |
-
negative_prompt_embeds=llama_vec_n,
|
378 |
-
negative_prompt_embeds_mask=llama_attention_mask_n,
|
379 |
-
negative_prompt_poolers=clip_l_pooler_n,
|
380 |
-
device=gpu,
|
381 |
-
dtype=torch.bfloat16,
|
382 |
-
image_embeddings=image_encoder_last_hidden_state,
|
383 |
-
latent_indices=latent_indices,
|
384 |
-
clean_latents=clean_latents,
|
385 |
-
clean_latent_indices=clean_latent_indices,
|
386 |
-
clean_latents_2x=clean_latents_2x,
|
387 |
-
clean_latent_2x_indices=clean_latent_2x_indices,
|
388 |
-
clean_latents_4x=clean_latents_4x,
|
389 |
-
clean_latent_4x_indices=clean_latent_4x_indices,
|
390 |
-
callback=callback,
|
391 |
-
)
|
392 |
-
|
393 |
-
total_generated_latent_frames += int(generated_latents.shape[2])
|
394 |
-
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
395 |
-
|
396 |
-
if not high_vram:
|
397 |
-
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
398 |
-
load_model_as_complete(vae, target_device=gpu)
|
399 |
-
|
400 |
-
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
401 |
-
|
402 |
-
if history_pixels is None:
|
403 |
-
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
404 |
-
else:
|
405 |
-
section_latent_frames = latent_window_size * 2
|
406 |
-
overlapped_frames = latent_window_size * 4 - 3
|
407 |
-
|
408 |
-
current_pixels = vae_decode(
|
409 |
-
real_history_latents[:, :, -section_latent_frames:], vae
|
410 |
-
).cpu()
|
411 |
-
history_pixels = soft_append_bcthw(
|
412 |
-
history_pixels, current_pixels, overlapped_frames
|
413 |
-
)
|
414 |
-
|
415 |
-
if not high_vram:
|
416 |
-
unload_complete_models()
|
417 |
-
|
418 |
-
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
419 |
-
|
420 |
-
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
421 |
-
|
422 |
-
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
423 |
-
|
424 |
-
stream.output_queue.push(('file', output_filename))
|
425 |
-
|
426 |
-
except:
|
427 |
-
traceback.print_exc()
|
428 |
-
if not high_vram:
|
429 |
-
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
430 |
-
|
431 |
-
stream.output_queue.push(('end', None))
|
432 |
-
return
|
433 |
-
|
434 |
-
def get_duration(
|
435 |
-
input_image, prompt, t2v, n_prompt,
|
436 |
-
seed, total_second_length, latent_window_size,
|
437 |
-
steps, cfg, gs, rs, gpu_memory_preservation,
|
438 |
-
use_teacache, mp4_crf
|
439 |
-
):
|
440 |
-
return total_second_length * 60
|
441 |
-
|
442 |
-
@spaces.GPU(duration=get_duration)
|
443 |
-
def process(
|
444 |
-
input_image, prompt, t2v=False, n_prompt="", seed=31337,
|
445 |
-
total_second_length=60, latent_window_size=9, steps=25,
|
446 |
-
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
|
447 |
-
use_teacache=True, mp4_crf=16
|
448 |
-
):
|
449 |
-
global stream
|
450 |
-
if t2v:
|
451 |
-
default_height, default_width = 640, 640
|
452 |
-
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
453 |
-
print("No input image provided. Using a blank white image.")
|
454 |
-
else:
|
455 |
-
composite_rgba_uint8 = input_image["composite"]
|
456 |
-
|
457 |
-
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
458 |
-
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
459 |
-
|
460 |
-
h, w = rgb_uint8.shape[:2]
|
461 |
-
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
462 |
-
|
463 |
-
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
464 |
-
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
|
465 |
-
|
466 |
-
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
467 |
-
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
468 |
-
|
469 |
-
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
470 |
-
|
471 |
-
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
472 |
-
|
473 |
-
stream = AsyncStream()
|
474 |
-
|
475 |
-
async_run(
|
476 |
-
worker, input_image, prompt, n_prompt, seed,
|
477 |
-
total_second_length, latent_window_size, steps,
|
478 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
479 |
-
)
|
480 |
-
|
481 |
-
output_filename = None
|
482 |
-
|
483 |
-
while True:
|
484 |
-
flag, data = stream.output_queue.next()
|
485 |
-
|
486 |
-
if flag == 'file':
|
487 |
-
output_filename = data
|
488 |
-
yield (
|
489 |
-
output_filename,
|
490 |
-
gr.update(),
|
491 |
-
gr.update(),
|
492 |
-
gr.update(),
|
493 |
-
gr.update(interactive=False),
|
494 |
-
gr.update(interactive=True)
|
495 |
-
)
|
496 |
-
|
497 |
-
elif flag == 'progress':
|
498 |
-
preview, desc, html = data
|
499 |
-
yield (
|
500 |
-
gr.update(),
|
501 |
-
gr.update(visible=True, value=preview),
|
502 |
-
desc,
|
503 |
-
html,
|
504 |
-
gr.update(interactive=False),
|
505 |
-
gr.update(interactive=True)
|
506 |
-
)
|
507 |
-
|
508 |
-
elif flag == 'end':
|
509 |
-
yield (
|
510 |
-
output_filename,
|
511 |
-
gr.update(visible=False),
|
512 |
-
gr.update(),
|
513 |
-
'',
|
514 |
-
gr.update(interactive=True),
|
515 |
-
gr.update(interactive=False)
|
516 |
-
)
|
517 |
-
break
|
518 |
-
|
519 |
-
def end_process():
|
520 |
-
stream.input_queue.push('end')
|
521 |
-
|
522 |
-
|
523 |
-
quick_prompts = [
|
524 |
-
'The girl dances gracefully, with clear movements, full of charm.',
|
525 |
-
'A character doing some simple body movements.'
|
526 |
-
]
|
527 |
-
quick_prompts = [[x] for x in quick_prompts]
|
528 |
-
|
529 |
-
|
530 |
-
def make_custom_css():
|
531 |
-
base_progress_css = make_progress_bar_css()
|
532 |
-
extra_css = """
|
533 |
-
body {
|
534 |
-
background: #fafbfe !important;
|
535 |
-
font-family: "Noto Sans", sans-serif;
|
536 |
-
}
|
537 |
-
#title-container {
|
538 |
-
text-align: center;
|
539 |
-
padding: 20px 0;
|
540 |
-
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
|
541 |
-
border-radius: 0 0 10px 10px;
|
542 |
-
margin-bottom: 20px;
|
543 |
-
}
|
544 |
-
#title-container h1 {
|
545 |
-
color: white;
|
546 |
-
font-size: 2rem;
|
547 |
-
margin: 0;
|
548 |
-
font-weight: 800;
|
549 |
-
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
|
550 |
-
}
|
551 |
-
.gr-panel {
|
552 |
-
background: #ffffffcc;
|
553 |
-
backdrop-filter: blur(4px);
|
554 |
-
border: 1px solid #dcdcf7;
|
555 |
-
border-radius: 12px;
|
556 |
-
padding: 16px;
|
557 |
-
margin-bottom: 8px;
|
558 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
559 |
-
}
|
560 |
-
.gr-box > label {
|
561 |
-
font-size: 0.9rem;
|
562 |
-
font-weight: 600;
|
563 |
-
color: #333;
|
564 |
-
}
|
565 |
-
.button-container button {
|
566 |
-
min-height: 48px;
|
567 |
-
font-size: 1rem;
|
568 |
-
font-weight: 600;
|
569 |
-
border-radius: 8px;
|
570 |
-
border: none !important;
|
571 |
-
}
|
572 |
-
.button-container button#start-button {
|
573 |
-
background-color: #4b9ffa !important;
|
574 |
-
color: #fff;
|
575 |
-
}
|
576 |
-
.button-container button#stop-button {
|
577 |
-
background-color: #ef5d84 !important;
|
578 |
-
color: #fff;
|
579 |
-
}
|
580 |
-
.button-container button:hover {
|
581 |
-
filter: brightness(0.97);
|
582 |
-
}
|
583 |
-
.no-generating-animation {
|
584 |
-
margin-top: 10px;
|
585 |
-
margin-bottom: 10px;
|
586 |
-
}
|
587 |
-
"""
|
588 |
-
return base_progress_css + extra_css
|
589 |
-
|
590 |
-
css = make_custom_css()
|
591 |
-
|
592 |
-
block = gr.Blocks(css=css).queue()
|
593 |
-
with block:
|
594 |
-
# Title (use gr.Group instead of gr.Box for older Gradio versions)
|
595 |
-
with gr.Group(elem_id="title-container"):
|
596 |
-
gr.Markdown("<h1>FramePack I2V</h1>")
|
597 |
-
|
598 |
-
gr.Markdown("""
|
599 |
-
### Video diffusion, but feels like image diffusion
|
600 |
-
FramePack I2V - a model that predicts future frames from past frames,
|
601 |
-
letting you generate short animations from a single image plus text prompt.
|
602 |
-
""")
|
603 |
-
|
604 |
-
with gr.Row():
|
605 |
-
with gr.Column():
|
606 |
-
input_image = gr.ImageEditor(
|
607 |
-
type="numpy",
|
608 |
-
label="Image Editor (use Brush for mask)",
|
609 |
-
height=320,
|
610 |
-
brush=gr.Brush(colors=["#ffffff"])
|
611 |
-
)
|
612 |
-
prompt = gr.Textbox(label="Prompt", value='')
|
613 |
-
t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False)
|
614 |
-
|
615 |
-
example_quick_prompts = gr.Dataset(
|
616 |
-
samples=quick_prompts,
|
617 |
-
label="Quick Prompts",
|
618 |
-
samples_per_page=1000,
|
619 |
-
components=[prompt]
|
620 |
-
)
|
621 |
-
example_quick_prompts.click(
|
622 |
-
fn=lambda x: x[0],
|
623 |
-
inputs=[example_quick_prompts],
|
624 |
-
outputs=prompt,
|
625 |
-
show_progress=False,
|
626 |
-
queue=False
|
627 |
-
)
|
628 |
-
|
629 |
-
with gr.Row(elem_classes="button-container"):
|
630 |
-
start_button = gr.Button(value="Start Generation", elem_id="start-button")
|
631 |
-
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
|
632 |
-
|
633 |
-
total_second_length = gr.Slider(
|
634 |
-
label="Total Video Length (Seconds)",
|
635 |
-
minimum=1,
|
636 |
-
maximum=60,
|
637 |
-
value=2,
|
638 |
-
step=0.1
|
639 |
-
)
|
640 |
-
|
641 |
-
with gr.Group():
|
642 |
-
with gr.Accordion("Advanced Settings", open=False):
|
643 |
-
use_teacache = gr.Checkbox(
|
644 |
-
label='Use TeaCache',
|
645 |
-
value=True,
|
646 |
-
info='Faster speed, but may worsen hands/fingers.'
|
647 |
-
)
|
648 |
-
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
649 |
-
seed = gr.Number(label="Seed", value=31337, precision=0)
|
650 |
-
latent_window_size = gr.Slider(
|
651 |
-
label="Latent Window Size",
|
652 |
-
minimum=1, maximum=33,
|
653 |
-
value=9, step=1,
|
654 |
-
visible=False
|
655 |
-
)
|
656 |
-
steps = gr.Slider(
|
657 |
-
label="Steps",
|
658 |
-
minimum=1, maximum=100,
|
659 |
-
value=25, step=1,
|
660 |
-
info='Not recommended to change drastically.'
|
661 |
-
)
|
662 |
-
cfg = gr.Slider(
|
663 |
-
label="CFG Scale",
|
664 |
-
minimum=1.0, maximum=32.0,
|
665 |
-
value=1.0, step=0.01,
|
666 |
-
visible=False
|
667 |
-
)
|
668 |
-
gs = gr.Slider(
|
669 |
-
label="Distilled CFG Scale",
|
670 |
-
minimum=1.0, maximum=32.0,
|
671 |
-
value=10.0, step=0.01,
|
672 |
-
info='Not recommended to change drastically.'
|
673 |
-
)
|
674 |
-
rs = gr.Slider(
|
675 |
-
label="CFG Re-Scale",
|
676 |
-
minimum=0.0, maximum=1.0,
|
677 |
-
value=0.0, step=0.01,
|
678 |
-
visible=False
|
679 |
-
)
|
680 |
-
gpu_memory_preservation = gr.Slider(
|
681 |
-
label="GPU Memory Preservation (GB)",
|
682 |
-
minimum=6, maximum=128,
|
683 |
-
value=6, step=0.1,
|
684 |
-
info="Increase if OOM occurs, but slower."
|
685 |
-
)
|
686 |
-
mp4_crf = gr.Slider(
|
687 |
-
label="MP4 Compression (CRF)",
|
688 |
-
minimum=0, maximum=100,
|
689 |
-
value=16, step=1,
|
690 |
-
info="Lower = better quality. 16 recommended."
|
691 |
-
)
|
692 |
-
|
693 |
-
with gr.Column():
|
694 |
-
preview_image = gr.Image(
|
695 |
-
label="Preview Latents",
|
696 |
-
height=200,
|
697 |
-
visible=False
|
698 |
-
)
|
699 |
-
result_video = gr.Video(
|
700 |
-
label="Finished Frames",
|
701 |
-
autoplay=True,
|
702 |
-
show_share_button=False,
|
703 |
-
height=512,
|
704 |
-
loop=True
|
705 |
-
)
|
706 |
-
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
707 |
-
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
708 |
-
|
709 |
-
|
710 |
-
ips = [
|
711 |
-
input_image, prompt, t2v, n_prompt, seed,
|
712 |
-
total_second_length, latent_window_size,
|
713 |
-
steps, cfg, gs, rs, gpu_memory_preservation,
|
714 |
-
use_teacache, mp4_crf
|
715 |
-
]
|
716 |
-
start_button.click(
|
717 |
-
fn=process,
|
718 |
-
inputs=ips,
|
719 |
-
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
|
720 |
-
)
|
721 |
-
end_button.click(fn=end_process)
|
722 |
-
|
723 |
-
|
724 |
-
block.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|