Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import json
|
|
10 |
|
11 |
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
12 |
|
13 |
-
#
|
14 |
translations = {
|
15 |
"en": {
|
16 |
"title": "FramePack - Image to Video Generation",
|
@@ -44,54 +44,54 @@ translations = {
|
|
44 |
"partial_video": "Processing error, but partial video has been generated",
|
45 |
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
46 |
},
|
47 |
-
"
|
48 |
-
"title": "FramePack -
|
49 |
-
"upload_image": "
|
50 |
-
"prompt": "
|
51 |
-
"quick_prompts": "
|
52 |
-
"start_generation": "
|
53 |
-
"stop_generation": "
|
54 |
-
"use_teacache": "
|
55 |
-
"teacache_info": "
|
56 |
-
"negative_prompt": "
|
57 |
-
"seed": "
|
58 |
-
"video_length": "
|
59 |
-
"latent_window": "
|
60 |
-
"steps": "
|
61 |
-
"steps_info": "
|
62 |
-
"cfg_scale": "CFG
|
63 |
-
"distilled_cfg": "
|
64 |
-
"distilled_cfg_info": "
|
65 |
-
"cfg_rescale": "CFG
|
66 |
-
"gpu_memory": "GPU
|
67 |
-
"gpu_memory_info": "
|
68 |
-
"next_latents": "
|
69 |
-
"generated_video": "
|
70 |
-
"sampling_note": "
|
71 |
-
"error_message": "
|
72 |
-
"processing_error": "
|
73 |
-
"network_error": "
|
74 |
-
"memory_error": "GPU
|
75 |
-
"model_error": "
|
76 |
-
"partial_video": "
|
77 |
-
"processing_interrupt": "
|
78 |
}
|
79 |
}
|
80 |
|
81 |
-
#
|
82 |
def get_translation(key, lang="en"):
|
83 |
if lang in translations and key in translations[lang]:
|
84 |
return translations[lang][key]
|
85 |
-
#
|
86 |
return translations["en"].get(key, key)
|
87 |
|
88 |
-
#
|
89 |
current_language = "en"
|
90 |
|
91 |
-
#
|
92 |
def switch_language():
|
93 |
global current_language
|
94 |
-
current_language = "
|
95 |
return current_language
|
96 |
|
97 |
import gradio as gr
|
@@ -102,21 +102,21 @@ import safetensors.torch as sf
|
|
102 |
import numpy as np
|
103 |
import math
|
104 |
|
105 |
-
#
|
106 |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
107 |
|
108 |
-
#
|
109 |
GPU_AVAILABLE = False
|
110 |
GPU_INITIALIZED = False
|
111 |
last_update_time = time.time()
|
112 |
|
113 |
-
#
|
114 |
if IN_HF_SPACE:
|
115 |
try:
|
116 |
import spaces
|
117 |
-
print("
|
118 |
|
119 |
-
#
|
120 |
try:
|
121 |
GPU_AVAILABLE = torch.cuda.is_available()
|
122 |
print(f"GPU available: {GPU_AVAILABLE}")
|
@@ -124,19 +124,19 @@ if IN_HF_SPACE:
|
|
124 |
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
|
125 |
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
|
126 |
|
127 |
-
#
|
128 |
test_tensor = torch.zeros(1, device='cuda')
|
129 |
test_tensor = test_tensor + 1
|
130 |
del test_tensor
|
131 |
-
print("
|
132 |
else:
|
133 |
-
print("
|
134 |
except Exception as e:
|
135 |
GPU_AVAILABLE = False
|
136 |
-
print(f"
|
137 |
-
print("
|
138 |
except ImportError:
|
139 |
-
print("
|
140 |
GPU_AVAILABLE = torch.cuda.is_available()
|
141 |
|
142 |
from PIL import Image
|
@@ -156,65 +156,61 @@ from diffusers_helper.bucket_tools import find_nearest_bucket
|
|
156 |
outputs_folder = './outputs/'
|
157 |
os.makedirs(outputs_folder, exist_ok=True)
|
158 |
|
159 |
-
#
|
160 |
if not IN_HF_SPACE:
|
161 |
-
# 仅在非Spaces环境中获取CUDA内存
|
162 |
try:
|
163 |
if torch.cuda.is_available():
|
164 |
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
165 |
-
print(f'
|
166 |
else:
|
167 |
-
free_mem_gb = 6.0 #
|
168 |
-
print("CUDA
|
169 |
except Exception as e:
|
170 |
-
free_mem_gb = 6.0
|
171 |
-
print(f"
|
172 |
|
173 |
high_vram = free_mem_gb > 60
|
174 |
-
print(f'
|
175 |
else:
|
176 |
-
#
|
177 |
-
print("
|
178 |
try:
|
179 |
if GPU_AVAILABLE:
|
180 |
-
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
|
181 |
-
high_vram = free_mem_gb > 10 #
|
182 |
else:
|
183 |
-
free_mem_gb = 6.0
|
184 |
high_vram = False
|
185 |
except Exception as e:
|
186 |
-
print(f"
|
187 |
-
free_mem_gb = 6.0
|
188 |
high_vram = False
|
189 |
|
190 |
-
print(f'GPU
|
191 |
|
192 |
-
#
|
193 |
models = {}
|
194 |
-
cpu_fallback_mode = not GPU_AVAILABLE #
|
195 |
|
196 |
-
# 使用加载模型的函数
|
197 |
def load_models():
|
198 |
global models, cpu_fallback_mode, GPU_INITIALIZED
|
199 |
|
200 |
if GPU_INITIALIZED:
|
201 |
-
print("
|
202 |
return models
|
203 |
|
204 |
-
print("
|
205 |
-
|
206 |
try:
|
207 |
-
# 设置设备,根据GPU可用性确定
|
208 |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
209 |
-
model_device = 'cpu' #
|
210 |
-
|
211 |
-
#
|
212 |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
|
213 |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
|
214 |
|
215 |
-
print(f"
|
216 |
|
217 |
-
# 加载模型
|
218 |
try:
|
219 |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
|
220 |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
|
@@ -227,12 +223,11 @@ def load_models():
|
|
227 |
|
228 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
|
229 |
|
230 |
-
print("
|
231 |
except Exception as e:
|
232 |
-
print(f"
|
233 |
-
print("
|
234 |
-
|
235 |
-
# 降低精度重试
|
236 |
dtype = torch.float32
|
237 |
transformer_dtype = torch.float32
|
238 |
cpu_fallback_mode = True
|
@@ -248,7 +243,7 @@ def load_models():
|
|
248 |
|
249 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
|
250 |
|
251 |
-
print("
|
252 |
|
253 |
vae.eval()
|
254 |
text_encoder.eval()
|
@@ -263,7 +258,6 @@ def load_models():
|
|
263 |
transformer.high_quality_fp32_output_for_inference = True
|
264 |
print('transformer.high_quality_fp32_output_for_inference = True')
|
265 |
|
266 |
-
# 设置模型精度
|
267 |
if not cpu_fallback_mode:
|
268 |
transformer.to(dtype=transformer_dtype)
|
269 |
vae.to(dtype=dtype)
|
@@ -280,7 +274,7 @@ def load_models():
|
|
280 |
if torch.cuda.is_available() and not cpu_fallback_mode:
|
281 |
try:
|
282 |
if not high_vram:
|
283 |
-
#
|
284 |
DynamicSwapInstaller.install_model(transformer, device=device)
|
285 |
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
286 |
else:
|
@@ -289,14 +283,13 @@ def load_models():
|
|
289 |
image_encoder.to(device)
|
290 |
vae.to(device)
|
291 |
transformer.to(device)
|
292 |
-
print(f"
|
293 |
except Exception as e:
|
294 |
-
print(f"
|
295 |
-
print("
|
296 |
cpu_fallback_mode = True
|
297 |
-
|
298 |
-
|
299 |
-
models = {
|
300 |
'text_encoder': text_encoder,
|
301 |
'text_encoder_2': text_encoder_2,
|
302 |
'tokenizer': tokenizer,
|
@@ -308,13 +301,13 @@ def load_models():
|
|
308 |
}
|
309 |
|
310 |
GPU_INITIALIZED = True
|
311 |
-
|
|
|
312 |
return models
|
313 |
except Exception as e:
|
314 |
-
print(f"
|
315 |
traceback.print_exc()
|
316 |
|
317 |
-
# 记录更详细的错误信息
|
318 |
error_info = {
|
319 |
"error": str(e),
|
320 |
"traceback": traceback.format_exc(),
|
@@ -322,144 +315,124 @@ def load_models():
|
|
322 |
"device": "cpu" if cpu_fallback_mode else "cuda",
|
323 |
}
|
324 |
|
325 |
-
# 保存错误信息到文件,方便排查
|
326 |
try:
|
327 |
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
|
328 |
f.write(str(error_info))
|
329 |
except:
|
330 |
pass
|
331 |
|
332 |
-
# 返回空字典,允许应用继续尝试运行
|
333 |
cpu_fallback_mode = True
|
334 |
return {}
|
335 |
|
336 |
-
|
337 |
-
# 使用Hugging Face Spaces GPU装饰器
|
338 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
|
339 |
try:
|
340 |
@spaces.GPU
|
341 |
def initialize_models():
|
342 |
-
"""
|
343 |
global GPU_INITIALIZED
|
344 |
try:
|
345 |
result = load_models()
|
346 |
GPU_INITIALIZED = True
|
347 |
return result
|
348 |
except Exception as e:
|
349 |
-
print(f"
|
350 |
traceback.print_exc()
|
351 |
global cpu_fallback_mode
|
352 |
cpu_fallback_mode = True
|
353 |
-
# 不使用装饰器再次尝试
|
354 |
return load_models()
|
355 |
except Exception as e:
|
356 |
-
print(f"
|
357 |
-
# 如果装饰器出错,直接使用非装饰器版本
|
358 |
def initialize_models():
|
359 |
return load_models()
|
360 |
|
361 |
-
|
362 |
-
# 以下函数内部会延迟获取模型
|
363 |
def get_models():
|
364 |
-
"""
|
365 |
global models, GPU_INITIALIZED
|
366 |
|
367 |
-
# 添加模型加载锁,防止并发加载
|
368 |
model_loading_key = "__model_loading__"
|
369 |
|
370 |
if not models:
|
371 |
-
# 检查是否正在加载模型
|
372 |
if model_loading_key in globals():
|
373 |
-
print("
|
374 |
-
# 等待模型加载完成
|
375 |
import time
|
376 |
start_wait = time.time()
|
377 |
while not models and model_loading_key in globals():
|
378 |
time.sleep(0.5)
|
379 |
-
# 超过60秒认为加载失败
|
380 |
if time.time() - start_wait > 60:
|
381 |
-
print("
|
382 |
break
|
383 |
|
384 |
if models:
|
385 |
return models
|
386 |
|
387 |
try:
|
388 |
-
# 设置加载标记
|
389 |
globals()[model_loading_key] = True
|
390 |
|
391 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
|
392 |
try:
|
393 |
-
print("
|
394 |
-
|
|
|
395 |
except Exception as e:
|
396 |
-
print(f"
|
397 |
-
|
398 |
-
models
|
399 |
else:
|
400 |
-
print("
|
401 |
-
|
|
|
402 |
except Exception as e:
|
403 |
-
print(f"
|
404 |
traceback.print_exc()
|
405 |
-
|
406 |
-
models = {}
|
407 |
finally:
|
408 |
-
# 无论成功与否,都移除加载标记
|
409 |
if model_loading_key in globals():
|
410 |
del globals()[model_loading_key]
|
411 |
|
412 |
return models
|
413 |
|
414 |
-
|
415 |
stream = AsyncStream()
|
416 |
|
417 |
-
|
418 |
@torch.no_grad()
|
419 |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
420 |
global last_update_time
|
421 |
last_update_time = time.time()
|
422 |
|
423 |
-
# 限制视频长度不超过5秒
|
424 |
total_second_length = min(total_second_length, 5.0)
|
425 |
|
426 |
-
# 获取模型
|
427 |
try:
|
428 |
-
|
429 |
-
if not
|
430 |
-
error_msg = "
|
431 |
print(error_msg)
|
432 |
stream.output_queue.push(('error', error_msg))
|
433 |
stream.output_queue.push(('end', None))
|
434 |
return
|
435 |
|
436 |
-
text_encoder =
|
437 |
-
text_encoder_2 =
|
438 |
-
tokenizer =
|
439 |
-
tokenizer_2 =
|
440 |
-
vae =
|
441 |
-
feature_extractor =
|
442 |
-
image_encoder =
|
443 |
-
transformer =
|
444 |
except Exception as e:
|
445 |
-
error_msg = f"
|
446 |
print(error_msg)
|
447 |
traceback.print_exc()
|
448 |
stream.output_queue.push(('error', error_msg))
|
449 |
stream.output_queue.push(('end', None))
|
450 |
return
|
451 |
|
452 |
-
# 确定设备
|
453 |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
454 |
-
print(f"
|
455 |
-
|
456 |
-
# 调整参数以适应CPU模式
|
457 |
if cpu_fallback_mode:
|
458 |
-
print("CPU
|
459 |
-
# 减小处理大小以加快CPU处理
|
460 |
latent_window_size = min(latent_window_size, 5)
|
461 |
-
steps = min(steps, 15)
|
462 |
-
total_second_length = min(total_second_length, 2.0)
|
463 |
|
464 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
465 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
@@ -473,17 +446,15 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
473 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
474 |
|
475 |
try:
|
476 |
-
# Clean GPU
|
477 |
if not high_vram and not cpu_fallback_mode:
|
478 |
try:
|
479 |
unload_complete_models(
|
480 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
481 |
)
|
482 |
except Exception as e:
|
483 |
-
print(f"
|
484 |
-
|
485 |
-
|
486 |
-
# Text encoding
|
487 |
last_update_time = time.time()
|
488 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
489 |
|
@@ -502,14 +473,14 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
502 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
503 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
504 |
except Exception as e:
|
505 |
-
error_msg = f"
|
506 |
print(error_msg)
|
507 |
traceback.print_exc()
|
508 |
stream.output_queue.push(('error', error_msg))
|
509 |
stream.output_queue.push(('end', None))
|
510 |
return
|
511 |
|
512 |
-
#
|
513 |
last_update_time = time.time()
|
514 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
515 |
|
@@ -517,26 +488,24 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
517 |
H, W, C = input_image.shape
|
518 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
519 |
|
520 |
-
# 如果是CPU模式,缩小处理尺寸
|
521 |
if cpu_fallback_mode:
|
522 |
height = min(height, 320)
|
523 |
width = min(width, 320)
|
524 |
|
525 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
526 |
-
|
527 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
528 |
|
529 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
530 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
531 |
except Exception as e:
|
532 |
-
error_msg = f"
|
533 |
print(error_msg)
|
534 |
traceback.print_exc()
|
535 |
stream.output_queue.push(('error', error_msg))
|
536 |
stream.output_queue.push(('end', None))
|
537 |
return
|
538 |
|
539 |
-
# VAE
|
540 |
last_update_time = time.time()
|
541 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
542 |
|
@@ -546,14 +515,14 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
546 |
|
547 |
start_latent = vae_encode(input_image_pt, vae)
|
548 |
except Exception as e:
|
549 |
-
error_msg = f"VAE
|
550 |
print(error_msg)
|
551 |
traceback.print_exc()
|
552 |
stream.output_queue.push(('error', error_msg))
|
553 |
stream.output_queue.push(('end', None))
|
554 |
return
|
555 |
|
556 |
-
# CLIP Vision
|
557 |
last_update_time = time.time()
|
558 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
559 |
|
@@ -564,14 +533,14 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
564 |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
565 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
566 |
except Exception as e:
|
567 |
-
error_msg = f"CLIP Vision
|
568 |
print(error_msg)
|
569 |
traceback.print_exc()
|
570 |
stream.output_queue.push(('error', error_msg))
|
571 |
stream.output_queue.push(('end', None))
|
572 |
return
|
573 |
|
574 |
-
#
|
575 |
try:
|
576 |
llama_vec = llama_vec.to(transformer.dtype)
|
577 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
@@ -579,14 +548,14 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
579 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
580 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
581 |
except Exception as e:
|
582 |
-
error_msg = f"
|
583 |
print(error_msg)
|
584 |
traceback.print_exc()
|
585 |
stream.output_queue.push(('error', error_msg))
|
586 |
stream.output_queue.push(('end', None))
|
587 |
return
|
588 |
|
589 |
-
#
|
590 |
last_update_time = time.time()
|
591 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
592 |
|
@@ -598,7 +567,7 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
598 |
history_pixels = None
|
599 |
total_generated_latent_frames = 0
|
600 |
except Exception as e:
|
601 |
-
error_msg = f"
|
602 |
print(error_msg)
|
603 |
traceback.print_exc()
|
604 |
stream.output_queue.push(('error', error_msg))
|
@@ -606,13 +575,8 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
606 |
return
|
607 |
|
608 |
latent_paddings = reversed(range(total_latent_sections))
|
609 |
-
|
610 |
if total_latent_sections > 4:
|
611 |
-
|
612 |
-
# items looks better than expanding it when total_latent_sections > 4
|
613 |
-
# One can try to remove below trick and just
|
614 |
-
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
|
615 |
-
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
616 |
|
617 |
for latent_padding in latent_paddings:
|
618 |
last_update_time = time.time()
|
@@ -620,14 +584,14 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
620 |
latent_padding_size = latent_padding * latent_window_size
|
621 |
|
622 |
if stream.input_queue.top() == 'end':
|
623 |
-
#
|
624 |
if history_pixels is not None and total_generated_latent_frames > 0:
|
625 |
try:
|
626 |
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
|
627 |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
628 |
stream.output_queue.push(('file', output_filename))
|
629 |
except Exception as e:
|
630 |
-
print(f"
|
631 |
|
632 |
stream.output_queue.push(('end', None))
|
633 |
return
|
@@ -643,10 +607,9 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
643 |
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
644 |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
645 |
except Exception as e:
|
646 |
-
error_msg = f"
|
647 |
print(error_msg)
|
648 |
traceback.print_exc()
|
649 |
-
# 尝试继续下一轮迭代而不是完全终止
|
650 |
if last_output_filename:
|
651 |
stream.output_queue.push(('file', last_output_filename))
|
652 |
continue
|
@@ -656,15 +619,13 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
656 |
unload_complete_models()
|
657 |
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
|
658 |
except Exception as e:
|
659 |
-
print(f"
|
660 |
-
# 继续执行,可能影响性能但不必终止
|
661 |
|
662 |
if use_teacache and not cpu_fallback_mode:
|
663 |
try:
|
664 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
665 |
except Exception as e:
|
666 |
-
print(f"
|
667 |
-
# 禁用teacache并继续
|
668 |
transformer.initialize_teacache(enable_teacache=False)
|
669 |
else:
|
670 |
transformer.initialize_teacache(enable_teacache=False)
|
@@ -674,25 +635,10 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
674 |
last_update_time = time.time()
|
675 |
|
676 |
try:
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
print(f"【调试】回调函数: 队列顶部信号 = {queue_top}")
|
682 |
-
|
683 |
-
if queue_top == 'end':
|
684 |
-
print("【调试】回调函数: 检测到停止信号,准备中断...")
|
685 |
-
try:
|
686 |
-
stream.output_queue.push(('end', None))
|
687 |
-
print("【调试】回调函数: 成功向输出队列推送end信号")
|
688 |
-
except Exception as e:
|
689 |
-
print(f"【调试】回调函数: 向输出队列推送end信号失败: {e}")
|
690 |
-
|
691 |
-
print("【调试】回调函数: 即将抛出KeyboardInterrupt异常")
|
692 |
-
raise KeyboardInterrupt('用户主动结束任务')
|
693 |
-
except Exception as e:
|
694 |
-
print(f"【调试】回调函数: 检查队列顶部信号出错: {e}")
|
695 |
-
|
696 |
preview = d['denoised']
|
697 |
preview = vae_decode_fake(preview)
|
698 |
|
@@ -702,25 +648,19 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
702 |
current_step = d['i'] + 1
|
703 |
percentage = int(100.0 * current_step / steps)
|
704 |
hint = f'Sampling {current_step}/{steps}'
|
705 |
-
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).
|
706 |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
707 |
-
except KeyboardInterrupt
|
708 |
-
# 捕获并重新抛出中断异常,确保它能传播到采样函数
|
709 |
-
print(f"【调试】回调函数: 捕获到KeyboardInterrupt: {e}")
|
710 |
-
print("【调试】回调函数: 重新抛出中断异常,确保传播到采样函数")
|
711 |
raise
|
712 |
except Exception as e:
|
713 |
-
print(f"
|
714 |
-
# 不中断采样过程
|
715 |
-
print(f"【调试】回调函数: 步骤 {d['i']} 完成")
|
716 |
return
|
717 |
|
718 |
try:
|
719 |
sampling_start_time = time.time()
|
720 |
-
print(f"
|
721 |
|
722 |
try:
|
723 |
-
print("【调试】开始sample_hunyuan采样流程")
|
724 |
generated_latents = sample_hunyuan(
|
725 |
transformer=transformer,
|
726 |
sampler='unipc',
|
@@ -730,7 +670,6 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
730 |
real_guidance_scale=cfg,
|
731 |
distilled_guidance_scale=gs,
|
732 |
guidance_rescale=rs,
|
733 |
-
# shift=3.0,
|
734 |
num_inference_steps=steps,
|
735 |
generator=rnd,
|
736 |
prompt_embeds=llama_vec,
|
@@ -752,43 +691,28 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
752 |
callback=callback,
|
753 |
)
|
754 |
|
755 |
-
print(f"
|
756 |
except KeyboardInterrupt as e:
|
757 |
-
|
758 |
-
print(f"【调试】捕获到KeyboardInterrupt: {e}")
|
759 |
-
print("【调试】用户主动中断采样过程,处理中断逻辑")
|
760 |
-
|
761 |
-
# 如果已经有生成的视频,返回最后生成的视频
|
762 |
if last_output_filename:
|
763 |
-
print(f"【调试】已有部分生成视频: {last_output_filename},返回此视频")
|
764 |
stream.output_queue.push(('file', last_output_filename))
|
765 |
-
error_msg = "
|
766 |
else:
|
767 |
-
|
768 |
-
error_msg = "用户中断生成过程,未生成视频"
|
769 |
|
770 |
-
print(f"【调试】推送错误消息: {error_msg}")
|
771 |
stream.output_queue.push(('error', error_msg))
|
772 |
-
print("【调试】推送end信号")
|
773 |
stream.output_queue.push(('end', None))
|
774 |
-
print("【调试】中断处理完成,返回")
|
775 |
return
|
776 |
except Exception as e:
|
777 |
-
print(f"
|
778 |
traceback.print_exc()
|
779 |
-
|
780 |
-
# 如果已经有生成的视频,返回最后生成的视频
|
781 |
if last_output_filename:
|
782 |
stream.output_queue.push(('file', last_output_filename))
|
783 |
-
|
784 |
-
# 创建错误信息
|
785 |
-
error_msg = f"采样过程中出错,但已返回部分生成的视频: {e}"
|
786 |
stream.output_queue.push(('error', error_msg))
|
787 |
else:
|
788 |
-
|
789 |
-
error_msg = f"采样过程中出错,无法生成视频: {e}"
|
790 |
stream.output_queue.push(('error', error_msg))
|
791 |
-
|
792 |
stream.output_queue.push(('end', None))
|
793 |
return
|
794 |
|
@@ -799,10 +723,9 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
799 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
800 |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
801 |
except Exception as e:
|
802 |
-
error_msg = f"
|
803 |
print(error_msg)
|
804 |
traceback.print_exc()
|
805 |
-
|
806 |
if last_output_filename:
|
807 |
stream.output_queue.push(('file', last_output_filename))
|
808 |
stream.output_queue.push(('error', error_msg))
|
@@ -814,23 +737,21 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
814 |
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
|
815 |
load_model_as_complete(vae, target_device=device)
|
816 |
except Exception as e:
|
817 |
-
print(f"
|
818 |
-
# 继续执行
|
819 |
|
820 |
try:
|
821 |
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
822 |
except Exception as e:
|
823 |
-
error_msg = f"
|
824 |
print(error_msg)
|
825 |
-
|
826 |
if last_output_filename:
|
827 |
stream.output_queue.push(('file', last_output_filename))
|
828 |
continue
|
829 |
|
830 |
try:
|
831 |
vae_start_time = time.time()
|
832 |
-
print(f"
|
833 |
-
|
834 |
if history_pixels is None:
|
835 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
836 |
else:
|
@@ -840,100 +761,76 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
840 |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
841 |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
842 |
|
843 |
-
print(f"VAE
|
844 |
-
|
845 |
if not high_vram and not cpu_fallback_mode:
|
846 |
try:
|
847 |
unload_complete_models()
|
848 |
except Exception as e:
|
849 |
-
print(f"
|
850 |
|
851 |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
852 |
|
853 |
save_start_time = time.time()
|
854 |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
855 |
-
print(f"
|
856 |
|
857 |
-
print(f'
|
858 |
|
859 |
last_output_filename = output_filename
|
860 |
stream.output_queue.push(('file', output_filename))
|
861 |
except Exception as e:
|
862 |
-
print(f"
|
863 |
traceback.print_exc()
|
864 |
-
|
865 |
-
# 如果已经有生成的视频,返回最后生成的视频
|
866 |
if last_output_filename:
|
867 |
stream.output_queue.push(('file', last_output_filename))
|
868 |
-
|
869 |
-
# 记录错误信息
|
870 |
-
error_msg = f"视频解码或保存过程中出错: {e}"
|
871 |
stream.output_queue.push(('error', error_msg))
|
872 |
-
|
873 |
-
# 尝试继续下一次迭代
|
874 |
continue
|
875 |
|
876 |
if is_last_section:
|
877 |
break
|
878 |
except Exception as e:
|
879 |
-
print(f"
|
880 |
-
print(f"【调试】错误详情:")
|
881 |
traceback.print_exc()
|
882 |
|
883 |
-
# 检查是否是中断类型异常
|
884 |
if isinstance(e, KeyboardInterrupt):
|
885 |
-
print("
|
886 |
|
887 |
if not high_vram and not cpu_fallback_mode:
|
888 |
try:
|
889 |
-
print("【调试】尝试卸载模型以释放资源")
|
890 |
unload_complete_models(
|
891 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
892 |
)
|
893 |
-
print("【调试】模型卸载成功")
|
894 |
except Exception as unload_error:
|
895 |
-
print(f"
|
896 |
-
pass
|
897 |
|
898 |
-
# 如果已经有生成的视频,返回最后生成的视频
|
899 |
if last_output_filename:
|
900 |
-
print(f"【调试】外层异常处理: 返回已生成的部分视频 {last_output_filename}")
|
901 |
stream.output_queue.push(('file', last_output_filename))
|
902 |
-
else:
|
903 |
-
print("【调试】外层异常处理: 未找到已生成的视频")
|
904 |
|
905 |
-
|
906 |
-
error_msg = f"处理��程中出现错误: {e}"
|
907 |
-
print(f"【调试】外层异常处理: 推送错误信息: {error_msg}")
|
908 |
stream.output_queue.push(('error', error_msg))
|
909 |
|
910 |
-
|
911 |
-
print("【调试】工作函数结束,推送end信号")
|
912 |
stream.output_queue.push(('end', None))
|
913 |
return
|
914 |
|
915 |
-
|
916 |
-
# 使用Hugging Face Spaces GPU装饰器处理进程函数
|
917 |
if IN_HF_SPACE and 'spaces' in globals():
|
918 |
@spaces.GPU
|
919 |
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
920 |
global stream
|
921 |
assert input_image is not None, 'No input image!'
|
922 |
|
923 |
-
# 初始化UI状态
|
924 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
925 |
|
926 |
try:
|
927 |
stream = AsyncStream()
|
928 |
-
|
929 |
-
# 异步启动worker
|
930 |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
931 |
|
932 |
output_filename = None
|
933 |
prev_output_filename = None
|
934 |
error_message = None
|
935 |
|
936 |
-
# 持续检查worker的输出
|
937 |
while True:
|
938 |
try:
|
939 |
flag, data = stream.output_queue.next()
|
@@ -941,50 +838,40 @@ if IN_HF_SPACE and 'spaces' in globals():
|
|
941 |
if flag == 'file':
|
942 |
output_filename = data
|
943 |
prev_output_filename = output_filename
|
944 |
-
# 清除错误显示,确保文件成功时不显示错误
|
945 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
946 |
|
947 |
if flag == 'progress':
|
948 |
preview, desc, html = data
|
949 |
-
# 更新进度时不改变错误信息,并确保停止按钮可交互
|
950 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
951 |
|
952 |
if flag == 'error':
|
953 |
error_message = data
|
954 |
-
print(f"
|
955 |
-
# 不立即显示,等待end信号
|
956 |
|
957 |
if flag == 'end':
|
958 |
-
# 如果有最后的视频文件,确保返回
|
959 |
if output_filename is None and prev_output_filename is not None:
|
960 |
output_filename = prev_output_filename
|
961 |
|
962 |
-
# 如果有错误消息,创建友好的错误显示
|
963 |
if error_message:
|
964 |
error_html = create_error_html(error_message)
|
965 |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
966 |
else:
|
967 |
-
# 确保成功完成时不显示任何错误
|
968 |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
969 |
break
|
970 |
except Exception as e:
|
971 |
-
print(f"
|
972 |
-
# 检查是否长时间没有更新
|
973 |
current_time = time.time()
|
974 |
-
if current_time - last_update_time > 60:
|
975 |
-
print(f"
|
976 |
-
|
977 |
-
# 如果有部分生成的视频,返回
|
978 |
if prev_output_filename:
|
979 |
-
error_html = create_error_html("
|
980 |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
981 |
else:
|
982 |
-
error_html = create_error_html(f"
|
983 |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
984 |
break
|
985 |
-
|
986 |
except Exception as e:
|
987 |
-
print(f"
|
988 |
traceback.print_exc()
|
989 |
error_msg = str(e)
|
990 |
|
@@ -997,20 +884,16 @@ else:
|
|
997 |
global stream
|
998 |
assert input_image is not None, 'No input image!'
|
999 |
|
1000 |
-
# 初始化UI状态
|
1001 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
1002 |
|
1003 |
try:
|
1004 |
stream = AsyncStream()
|
1005 |
-
|
1006 |
-
# 异步启动worker
|
1007 |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
1008 |
|
1009 |
output_filename = None
|
1010 |
prev_output_filename = None
|
1011 |
error_message = None
|
1012 |
|
1013 |
-
# 持续检查worker的输出
|
1014 |
while True:
|
1015 |
try:
|
1016 |
flag, data = stream.output_queue.next()
|
@@ -1018,107 +901,85 @@ else:
|
|
1018 |
if flag == 'file':
|
1019 |
output_filename = data
|
1020 |
prev_output_filename = output_filename
|
1021 |
-
# 清除错误显示,确保文件成功时不显示错误
|
1022 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
1023 |
|
1024 |
if flag == 'progress':
|
1025 |
preview, desc, html = data
|
1026 |
-
# 更新进度时不改变错误信息,并确保停止按钮可交互
|
1027 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1028 |
|
1029 |
if flag == 'error':
|
1030 |
error_message = data
|
1031 |
-
print(f"
|
1032 |
-
# 不立即显示,等待end信号
|
1033 |
|
1034 |
if flag == 'end':
|
1035 |
-
# 如果有最后的视频文件,确保返回
|
1036 |
if output_filename is None and prev_output_filename is not None:
|
1037 |
output_filename = prev_output_filename
|
1038 |
|
1039 |
-
# 如果有错误消息,创建友好的错误显示
|
1040 |
if error_message:
|
1041 |
error_html = create_error_html(error_message)
|
1042 |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
1043 |
else:
|
1044 |
-
# 确保成功完成时不显示任何错误
|
1045 |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
1046 |
break
|
1047 |
except Exception as e:
|
1048 |
-
print(f"
|
1049 |
-
# 检查是否长时间没有更新
|
1050 |
current_time = time.time()
|
1051 |
-
if current_time - last_update_time > 60:
|
1052 |
-
print(f"
|
1053 |
-
|
1054 |
-
# 如果有部分生成的视频,返回
|
1055 |
if prev_output_filename:
|
1056 |
-
error_html = create_error_html("
|
1057 |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
1058 |
else:
|
1059 |
-
error_html = create_error_html(f"
|
1060 |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
1061 |
break
|
1062 |
-
|
1063 |
except Exception as e:
|
1064 |
-
print(f"
|
1065 |
traceback.print_exc()
|
1066 |
error_msg = str(e)
|
1067 |
|
1068 |
error_html = create_error_html(error_msg)
|
1069 |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
1070 |
|
1071 |
-
|
1072 |
def end_process():
|
1073 |
-
"
|
1074 |
-
print("【调试】用户点击了停止按钮,发送停止信号...")
|
1075 |
-
# 确保stream已初始化
|
1076 |
if 'stream' in globals() and stream is not None:
|
1077 |
-
# 在推送前检查队列状态
|
1078 |
try:
|
1079 |
current_top = stream.input_queue.top()
|
1080 |
-
print(f"
|
1081 |
except Exception as e:
|
1082 |
-
print(f"
|
1083 |
-
|
1084 |
-
# 推送end信号
|
1085 |
try:
|
1086 |
stream.input_queue.push('end')
|
1087 |
-
print("
|
1088 |
-
|
1089 |
-
# 验证信号是否成功推送
|
1090 |
try:
|
1091 |
current_top_after = stream.input_queue.top()
|
1092 |
-
print(f"
|
1093 |
except Exception as e:
|
1094 |
-
print(f"
|
1095 |
-
|
1096 |
except Exception as e:
|
1097 |
-
print(f"
|
1098 |
else:
|
1099 |
-
print("
|
1100 |
return None
|
1101 |
|
1102 |
-
|
1103 |
quick_prompts = [
|
1104 |
'The girl dances gracefully, with clear movements, full of charm.',
|
1105 |
'A character doing some simple body movements.',
|
1106 |
]
|
1107 |
quick_prompts = [[x] for x in quick_prompts]
|
1108 |
|
1109 |
-
|
1110 |
-
# 创建一个自定义CSS,增加响应式布局支持
|
1111 |
def make_custom_css():
|
1112 |
progress_bar_css = make_progress_bar_css()
|
1113 |
|
1114 |
responsive_css = """
|
1115 |
-
/*
|
|
|
1116 |
#app-container {
|
1117 |
max-width: 100%;
|
1118 |
margin: 0 auto;
|
1119 |
}
|
1120 |
|
1121 |
-
/* 语言切换按钮样式 */
|
1122 |
#language-toggle {
|
1123 |
position: fixed;
|
1124 |
top: 10px;
|
@@ -1133,27 +994,23 @@ def make_custom_css():
|
|
1133 |
font-size: 14px;
|
1134 |
}
|
1135 |
|
1136 |
-
/* 页面标题样式 */
|
1137 |
h1 {
|
1138 |
font-size: 2rem;
|
1139 |
text-align: center;
|
1140 |
margin-bottom: 1rem;
|
1141 |
}
|
1142 |
|
1143 |
-
/* 按钮样式 */
|
1144 |
.start-btn, .stop-btn {
|
1145 |
min-height: 45px;
|
1146 |
font-size: 1rem;
|
1147 |
}
|
1148 |
|
1149 |
-
/* 移动设备样式 - 小屏幕 */
|
1150 |
@media (max-width: 768px) {
|
1151 |
h1 {
|
1152 |
font-size: 1.5rem;
|
1153 |
margin-bottom: 0.5rem;
|
1154 |
}
|
1155 |
|
1156 |
-
/* 单列布局 */
|
1157 |
.mobile-full-width {
|
1158 |
flex-direction: column !important;
|
1159 |
}
|
@@ -1163,66 +1020,55 @@ def make_custom_css():
|
|
1163 |
flex-grow: 1;
|
1164 |
}
|
1165 |
|
1166 |
-
/* 调整视频大小 */
|
1167 |
.video-container {
|
1168 |
height: auto !important;
|
1169 |
}
|
1170 |
|
1171 |
-
/* 调整按钮大小 */
|
1172 |
.button-container button {
|
1173 |
min-height: 50px;
|
1174 |
font-size: 1rem;
|
1175 |
touch-action: manipulation;
|
1176 |
}
|
1177 |
|
1178 |
-
/* 调整滑块 */
|
1179 |
.slider-container input[type="range"] {
|
1180 |
height: 30px;
|
1181 |
}
|
1182 |
}
|
1183 |
|
1184 |
-
/* 平板设备样式 */
|
1185 |
@media (min-width: 769px) and (max-width: 1024px) {
|
1186 |
.tablet-adjust {
|
1187 |
width: 48% !important;
|
1188 |
}
|
1189 |
}
|
1190 |
|
1191 |
-
/* 黑暗模式支持 */
|
1192 |
@media (prefers-color-scheme: dark) {
|
1193 |
.dark-mode-text {
|
1194 |
color: #f0f0f0;
|
1195 |
}
|
1196 |
-
|
1197 |
.dark-mode-bg {
|
1198 |
background-color: #2a2a2a;
|
1199 |
}
|
1200 |
}
|
1201 |
|
1202 |
-
/* 增强可访问性 */
|
1203 |
button, input, select, textarea {
|
1204 |
-
font-size: 16px;
|
1205 |
}
|
1206 |
|
1207 |
-
/* 触摸优化 */
|
1208 |
button, .interactive-element {
|
1209 |
min-height: 44px;
|
1210 |
min-width: 44px;
|
1211 |
}
|
1212 |
|
1213 |
-
/* 提高对比度 */
|
1214 |
.high-contrast {
|
1215 |
color: #fff;
|
1216 |
background-color: #000;
|
1217 |
}
|
1218 |
|
1219 |
-
/* 进度条样式增强 */
|
1220 |
.progress-container {
|
1221 |
margin-top: 10px;
|
1222 |
margin-bottom: 10px;
|
1223 |
}
|
1224 |
|
1225 |
-
/* 错误消息样式 */
|
1226 |
#error-message {
|
1227 |
color: #ff4444;
|
1228 |
font-weight: bold;
|
@@ -1231,7 +1077,6 @@ def make_custom_css():
|
|
1231 |
margin-top: 10px;
|
1232 |
}
|
1233 |
|
1234 |
-
/* 确保错误容器正确显示 */
|
1235 |
.error-message {
|
1236 |
background-color: rgba(255, 0, 0, 0.1);
|
1237 |
padding: 10px;
|
@@ -1240,19 +1085,16 @@ def make_custom_css():
|
|
1240 |
border: 1px solid #ffcccc;
|
1241 |
}
|
1242 |
|
1243 |
-
|
1244 |
-
.error-msg-en, .error-msg-zh {
|
1245 |
font-weight: bold;
|
1246 |
}
|
1247 |
|
1248 |
-
/* 错误图标 */
|
1249 |
.error-icon {
|
1250 |
color: #ff4444;
|
1251 |
font-size: 18px;
|
1252 |
margin-right: 8px;
|
1253 |
}
|
1254 |
|
1255 |
-
/* 确保空错误消息不显示背景和边框 */
|
1256 |
#error-message:empty {
|
1257 |
background-color: transparent;
|
1258 |
border: none;
|
@@ -1260,37 +1102,26 @@ def make_custom_css():
|
|
1260 |
margin: 0;
|
1261 |
}
|
1262 |
|
1263 |
-
/* 修复Gradio默认错误显示 */
|
1264 |
.error {
|
1265 |
display: none !important;
|
1266 |
}
|
1267 |
"""
|
1268 |
|
1269 |
-
|
1270 |
-
combined_css = progress_bar_css + responsive_css
|
1271 |
-
return combined_css
|
1272 |
-
|
1273 |
|
1274 |
css = make_custom_css()
|
1275 |
block = gr.Blocks(css=css).queue()
|
1276 |
with block:
|
1277 |
-
# 添加语言切换功能
|
1278 |
gr.HTML("""
|
1279 |
<div id="app-container">
|
1280 |
-
<button id="language-toggle" onclick="toggleLanguage()"
|
1281 |
</div>
|
1282 |
<script>
|
1283 |
-
// 全局变量,存储当前语言
|
1284 |
window.currentLang = "en";
|
1285 |
-
|
1286 |
-
// 语言切换函数
|
1287 |
function toggleLanguage() {
|
1288 |
-
window.currentLang = window.currentLang === "en" ? "
|
1289 |
|
1290 |
-
// 获取所有带有data-i18n属性的元素
|
1291 |
const elements = document.querySelectorAll('[data-i18n]');
|
1292 |
-
|
1293 |
-
// 遍历并切换语言
|
1294 |
elements.forEach(el => {
|
1295 |
const key = el.getAttribute('data-i18n');
|
1296 |
const translations = {
|
@@ -1318,50 +1149,37 @@ with block:
|
|
1318 |
"next_latents": "Next Latents",
|
1319 |
"generated_video": "Generated Video",
|
1320 |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
|
1321 |
-
"error_message": "Error"
|
1322 |
-
"processing_error": "Processing error",
|
1323 |
-
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
|
1324 |
-
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
|
1325 |
-
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
|
1326 |
-
"partial_video": "Processing error, but partial video has been generated",
|
1327 |
-
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
1328 |
},
|
1329 |
-
"
|
1330 |
-
"title": "FramePack -
|
1331 |
-
"upload_image": "
|
1332 |
-
"prompt": "
|
1333 |
-
"quick_prompts": "
|
1334 |
-
"start_generation": "
|
1335 |
-
"stop_generation": "
|
1336 |
-
"use_teacache": "
|
1337 |
-
"teacache_info": "
|
1338 |
-
"negative_prompt": "
|
1339 |
-
"seed": "
|
1340 |
-
"video_length": "
|
1341 |
-
"latent_window": "
|
1342 |
-
"steps": "
|
1343 |
-
"steps_info": "
|
1344 |
-
"cfg_scale": "CFG
|
1345 |
-
"distilled_cfg": "
|
1346 |
-
"distilled_cfg_info": "
|
1347 |
-
"cfg_rescale": "CFG
|
1348 |
-
"gpu_memory": "GPU
|
1349 |
-
"gpu_memory_info": "
|
1350 |
-
"next_latents": "
|
1351 |
-
"generated_video": "
|
1352 |
-
"sampling_note": "
|
1353 |
-
"error_message": "
|
1354 |
-
"processing_error": "处理过程出错",
|
1355 |
-
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
|
1356 |
-
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
|
1357 |
-
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
|
1358 |
-
"partial_video": "处理过程中出现错误,但已生成部分视频",
|
1359 |
-
"processing_interrupt": "处理过程中断,但已生成部分视频"
|
1360 |
}
|
1361 |
};
|
1362 |
|
1363 |
if (translations[window.currentLang] && translations[window.currentLang][key]) {
|
1364 |
-
// 根据元素类型设置文本
|
1365 |
if (el.tagName === 'BUTTON') {
|
1366 |
el.textContent = translations[window.currentLang][key];
|
1367 |
} else if (el.tagName === 'LABEL') {
|
@@ -1372,39 +1190,35 @@ with block:
|
|
1372 |
}
|
1373 |
});
|
1374 |
|
1375 |
-
//
|
1376 |
document.querySelectorAll('.bilingual-label').forEach(el => {
|
1377 |
const enText = el.getAttribute('data-en');
|
1378 |
-
const
|
1379 |
-
el.textContent = window.currentLang === 'en' ? enText :
|
1380 |
});
|
1381 |
|
1382 |
-
//
|
1383 |
document.querySelectorAll('[data-lang]').forEach(el => {
|
1384 |
-
el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none';
|
1385 |
});
|
1386 |
}
|
1387 |
|
1388 |
-
// 页面加载后初始化
|
1389 |
document.addEventListener('DOMContentLoaded', function() {
|
1390 |
-
// 添加data-i18n属性到需要国际化的元素
|
1391 |
setTimeout(() => {
|
1392 |
-
//
|
1393 |
const labelMap = {
|
1394 |
"Upload Image": "upload_image",
|
1395 |
-
"
|
1396 |
"Prompt": "prompt",
|
1397 |
-
"
|
1398 |
"Quick Prompts": "quick_prompts",
|
1399 |
-
"
|
1400 |
-
"Generate": "start_generation",
|
1401 |
-
"
|
1402 |
"Stop": "stop_generation",
|
1403 |
-
"
|
1404 |
-
// 添加其他标签映射...
|
1405 |
};
|
1406 |
|
1407 |
-
// 处理标签
|
1408 |
document.querySelectorAll('label, span, button').forEach(el => {
|
1409 |
const text = el.textContent.trim();
|
1410 |
if (labelMap[text]) {
|
@@ -1412,84 +1226,80 @@ with block:
|
|
1412 |
}
|
1413 |
});
|
1414 |
|
1415 |
-
// 添加特定元素的i18n属性
|
1416 |
const titleEl = document.querySelector('h1');
|
1417 |
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
|
1418 |
|
1419 |
-
// 初始化标签语言
|
1420 |
toggleLanguage();
|
1421 |
}, 1000);
|
1422 |
});
|
1423 |
</script>
|
1424 |
""")
|
|
|
|
|
1425 |
|
1426 |
-
# 标题使用data-i18n属性以便JavaScript切换
|
1427 |
-
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>")
|
1428 |
-
|
1429 |
-
# 使用带有mobile-full-width类的响应式行
|
1430 |
with gr.Row(elem_classes="mobile-full-width"):
|
1431 |
with gr.Column(scale=1, elem_classes="mobile-full-width"):
|
1432 |
-
# 添加双语标签 - 上传图像
|
1433 |
input_image = gr.Image(
|
1434 |
sources='upload',
|
1435 |
type="numpy",
|
1436 |
-
label="Upload Image
|
1437 |
elem_id="input-image",
|
1438 |
height=320
|
1439 |
)
|
1440 |
|
1441 |
-
# 添加双语标签 - 提示词
|
1442 |
prompt = gr.Textbox(
|
1443 |
-
label="Prompt
|
1444 |
value='',
|
1445 |
elem_id="prompt-input"
|
1446 |
)
|
1447 |
|
1448 |
-
# 添加双语标签 - 快速提示词
|
1449 |
example_quick_prompts = gr.Dataset(
|
1450 |
samples=quick_prompts,
|
1451 |
-
label='Quick Prompts
|
1452 |
samples_per_page=1000,
|
1453 |
components=[prompt]
|
1454 |
)
|
1455 |
-
example_quick_prompts.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
1456 |
|
1457 |
-
# 按钮添加样式和双语标签
|
1458 |
with gr.Row(elem_classes="button-container"):
|
1459 |
start_button = gr.Button(
|
1460 |
-
value="Generate
|
1461 |
elem_classes="start-btn",
|
1462 |
elem_id="start-button",
|
1463 |
variant="primary"
|
1464 |
)
|
1465 |
|
1466 |
end_button = gr.Button(
|
1467 |
-
value="Stop
|
1468 |
elem_classes="stop-btn",
|
1469 |
elem_id="stop-button",
|
1470 |
interactive=False
|
1471 |
)
|
1472 |
|
1473 |
-
# 参数设置区域
|
1474 |
with gr.Group():
|
1475 |
use_teacache = gr.Checkbox(
|
1476 |
-
label='Use TeaCache
|
1477 |
value=True,
|
1478 |
-
info='Faster speed, but may result in slightly worse finger and hand generation.
|
1479 |
)
|
1480 |
|
1481 |
-
n_prompt = gr.Textbox(label="Negative Prompt
|
1482 |
|
1483 |
seed = gr.Number(
|
1484 |
-
label="Seed
|
1485 |
value=31337,
|
1486 |
precision=0
|
1487 |
)
|
1488 |
-
|
1489 |
-
# 添加slider-container类以便CSS触摸优化
|
1490 |
with gr.Group(elem_classes="slider-container"):
|
1491 |
total_second_length = gr.Slider(
|
1492 |
-
label="Video Length (max 5 seconds)
|
1493 |
minimum=1,
|
1494 |
maximum=5,
|
1495 |
value=5,
|
@@ -1497,7 +1307,7 @@ with block:
|
|
1497 |
)
|
1498 |
|
1499 |
latent_window_size = gr.Slider(
|
1500 |
-
label="Latent Window Size
|
1501 |
minimum=1,
|
1502 |
maximum=33,
|
1503 |
value=9,
|
@@ -1506,12 +1316,12 @@ with block:
|
|
1506 |
)
|
1507 |
|
1508 |
steps = gr.Slider(
|
1509 |
-
label="Inference Steps
|
1510 |
minimum=1,
|
1511 |
maximum=100,
|
1512 |
value=25,
|
1513 |
step=1,
|
1514 |
-
info='Changing this value is not recommended.
|
1515 |
)
|
1516 |
|
1517 |
cfg = gr.Slider(
|
@@ -1524,16 +1334,16 @@ with block:
|
|
1524 |
)
|
1525 |
|
1526 |
gs = gr.Slider(
|
1527 |
-
label="Distilled CFG Scale
|
1528 |
minimum=1.0,
|
1529 |
maximum=32.0,
|
1530 |
value=10.0,
|
1531 |
step=0.01,
|
1532 |
-
info='Changing this value is not recommended.
|
1533 |
)
|
1534 |
|
1535 |
rs = gr.Slider(
|
1536 |
-
label="CFG Rescale
|
1537 |
minimum=0.0,
|
1538 |
maximum=1.0,
|
1539 |
value=0.0,
|
@@ -1542,111 +1352,101 @@ with block:
|
|
1542 |
)
|
1543 |
|
1544 |
gpu_memory_preservation = gr.Slider(
|
1545 |
-
label="GPU Memory (GB)
|
1546 |
minimum=6,
|
1547 |
maximum=128,
|
1548 |
value=6,
|
1549 |
step=0.1,
|
1550 |
-
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.
|
1551 |
)
|
1552 |
|
1553 |
-
# 右侧预览和结果列
|
1554 |
with gr.Column(scale=1, elem_classes="mobile-full-width"):
|
1555 |
-
# 预览图像
|
1556 |
preview_image = gr.Image(
|
1557 |
-
label="Preview
|
1558 |
height=200,
|
1559 |
visible=False,
|
1560 |
elem_classes="preview-container"
|
1561 |
)
|
1562 |
|
1563 |
-
# 视频结果容器
|
1564 |
result_video = gr.Video(
|
1565 |
-
label="Generated Video
|
1566 |
autoplay=True,
|
1567 |
-
show_share_button=True,
|
1568 |
height=512,
|
1569 |
loop=True,
|
1570 |
elem_classes="video-container",
|
1571 |
elem_id="result-video"
|
1572 |
)
|
1573 |
|
1574 |
-
|
1575 |
-
gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>")
|
1576 |
|
1577 |
-
# 进度指示器
|
1578 |
with gr.Group(elem_classes="progress-container"):
|
1579 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
1580 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1581 |
|
1582 |
-
# 错误信息区域 - 确保使用HTML组件以支持我们的自定义错误消息格式
|
1583 |
error_message = gr.HTML('', elem_id='error-message', visible=True)
|
1584 |
|
1585 |
-
# 处理函数
|
1586 |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
1587 |
-
|
1588 |
-
# 开始和结束按钮事件
|
1589 |
-
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
1590 |
-
end_button.click(fn=end_process)
|
1591 |
|
|
|
|
|
|
|
|
|
1592 |
|
1593 |
-
block.launch()
|
1594 |
|
1595 |
-
# 创建友好的错误显示HTML
|
1596 |
def create_error_html(error_msg, is_timeout=False):
|
1597 |
-
"""创建双语错误消息HTML"""
|
1598 |
-
# 提供更友好��中英文双语错误信息
|
1599 |
en_msg = ""
|
1600 |
-
|
1601 |
|
1602 |
if is_timeout:
|
1603 |
-
|
1604 |
-
|
1605 |
-
|
1606 |
-
|
1607 |
-
|
1608 |
-
|
1609 |
-
|
1610 |
-
|
1611 |
-
|
1612 |
-
|
1613 |
-
|
1614 |
-
|
|
|
|
|
|
|
|
|
1615 |
else:
|
1616 |
-
en_msg = "Error during sampling
|
1617 |
-
|
1618 |
-
elif "
|
1619 |
-
en_msg = "Network
|
1620 |
-
|
1621 |
-
elif "VAE" in error_msg or "
|
1622 |
-
en_msg = "Error during video decoding or saving process. Try
|
1623 |
-
|
1624 |
else:
|
1625 |
en_msg = f"Processing error: {error_msg}"
|
1626 |
-
|
1627 |
|
1628 |
-
# 创建双语错误消息HTML - 添加有用的图标并确保CSS样式适用
|
1629 |
return f"""
|
1630 |
<div class="error-message" id="custom-error-container">
|
1631 |
<div class="error-msg-en" data-lang="en">
|
1632 |
<span class="error-icon">⚠️</span> {en_msg}
|
1633 |
</div>
|
1634 |
-
<div class="error-msg-
|
1635 |
-
<span class="error-icon">⚠️</span> {
|
1636 |
</div>
|
1637 |
</div>
|
1638 |
<script>
|
1639 |
-
// 根据当前语言显示相应的错误消息
|
1640 |
(function() {{
|
1641 |
const errorContainer = document.getElementById('custom-error-container');
|
1642 |
if (errorContainer) {{
|
1643 |
-
const currentLang = window.currentLang || 'en';
|
1644 |
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
|
1645 |
errMsgs.forEach(msg => {{
|
1646 |
-
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
|
1647 |
}});
|
1648 |
-
|
1649 |
-
// 确保Gradio默认错误UI不显示
|
1650 |
const defaultErrorElements = document.querySelectorAll('.error');
|
1651 |
defaultErrorElements.forEach(el => {{
|
1652 |
el.style.display = 'none';
|
@@ -1654,4 +1454,4 @@ def create_error_html(error_msg, is_timeout=False):
|
|
1654 |
}}
|
1655 |
}})();
|
1656 |
</script>
|
1657 |
-
"""
|
|
|
10 |
|
11 |
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
12 |
|
13 |
+
# 영어/한국어 번역 딕셔너리
|
14 |
translations = {
|
15 |
"en": {
|
16 |
"title": "FramePack - Image to Video Generation",
|
|
|
44 |
"partial_video": "Processing error, but partial video has been generated",
|
45 |
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
46 |
},
|
47 |
+
"ko": {
|
48 |
+
"title": "FramePack - 이미지에서 동영상 생성",
|
49 |
+
"upload_image": "이미지 업로드",
|
50 |
+
"prompt": "프롬프트",
|
51 |
+
"quick_prompts": "빠른 프롬프트 목록",
|
52 |
+
"start_generation": "생성 시작",
|
53 |
+
"stop_generation": "생성 중지",
|
54 |
+
"use_teacache": "TeaCache 사용",
|
55 |
+
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
|
56 |
+
"negative_prompt": "부정 프롬프트",
|
57 |
+
"seed": "랜덤 시드",
|
58 |
+
"video_length": "동영상 길이 (최대 5초)",
|
59 |
+
"latent_window": "잠재 윈도우 크기",
|
60 |
+
"steps": "추론 스텝 수",
|
61 |
+
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
62 |
+
"cfg_scale": "CFG 스케일",
|
63 |
+
"distilled_cfg": "증류된 CFG 스케일",
|
64 |
+
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
65 |
+
"cfg_rescale": "CFG 재스케일",
|
66 |
+
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
|
67 |
+
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
|
68 |
+
"next_latents": "다음 잠재 변수",
|
69 |
+
"generated_video": "생성된 동영상",
|
70 |
+
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.",
|
71 |
+
"error_message": "오류 메시지",
|
72 |
+
"processing_error": "처리 중 오류 발생",
|
73 |
+
"network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.",
|
74 |
+
"memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.",
|
75 |
+
"model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.",
|
76 |
+
"partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.",
|
77 |
+
"processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다."
|
78 |
}
|
79 |
}
|
80 |
|
81 |
+
# 다국어 텍스트를 반환하는 함수
|
82 |
def get_translation(key, lang="en"):
|
83 |
if lang in translations and key in translations[lang]:
|
84 |
return translations[lang][key]
|
85 |
+
# 기본���(영어) 반환
|
86 |
return translations["en"].get(key, key)
|
87 |
|
88 |
+
# 디폴트 언어를 영어로 설정
|
89 |
current_language = "en"
|
90 |
|
91 |
+
# 언어 전환 함수
|
92 |
def switch_language():
|
93 |
global current_language
|
94 |
+
current_language = "ko" if current_language == "en" else "en"
|
95 |
return current_language
|
96 |
|
97 |
import gradio as gr
|
|
|
102 |
import numpy as np
|
103 |
import math
|
104 |
|
105 |
+
# Spaces 환경 체크
|
106 |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
107 |
|
108 |
+
# GPU 사용 여부 기록
|
109 |
GPU_AVAILABLE = False
|
110 |
GPU_INITIALIZED = False
|
111 |
last_update_time = time.time()
|
112 |
|
113 |
+
# Spaces 환경이라면, spaces 모듈 불러오기 시도
|
114 |
if IN_HF_SPACE:
|
115 |
try:
|
116 |
import spaces
|
117 |
+
print("Hugging Face Space 환경에서 실행 중, spaces 모듈을 불러왔습니다.")
|
118 |
|
119 |
+
# GPU 사용 가능 여부 확인
|
120 |
try:
|
121 |
GPU_AVAILABLE = torch.cuda.is_available()
|
122 |
print(f"GPU available: {GPU_AVAILABLE}")
|
|
|
124 |
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
|
125 |
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
|
126 |
|
127 |
+
# 작은 테스트 연산으로 실제 GPU 동작 확인
|
128 |
test_tensor = torch.zeros(1, device='cuda')
|
129 |
test_tensor = test_tensor + 1
|
130 |
del test_tensor
|
131 |
+
print("GPU 테스트 연산 성공")
|
132 |
else:
|
133 |
+
print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.")
|
134 |
except Exception as e:
|
135 |
GPU_AVAILABLE = False
|
136 |
+
print(f"GPU 확인 중 오류 발생: {e}")
|
137 |
+
print("CPU 모드로 진행합니다.")
|
138 |
except ImportError:
|
139 |
+
print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.")
|
140 |
GPU_AVAILABLE = torch.cuda.is_available()
|
141 |
|
142 |
from PIL import Image
|
|
|
156 |
outputs_folder = './outputs/'
|
157 |
os.makedirs(outputs_folder, exist_ok=True)
|
158 |
|
159 |
+
# Spaces 환경이 아닐 경우, VRAM 확인
|
160 |
if not IN_HF_SPACE:
|
|
|
161 |
try:
|
162 |
if torch.cuda.is_available():
|
163 |
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
164 |
+
print(f'남은 VRAM: {free_mem_gb} GB')
|
165 |
else:
|
166 |
+
free_mem_gb = 6.0 # 기본값
|
167 |
+
print("CUDA를 사용할 수 없으므로 기본 메모리 설정을 사용합니다.")
|
168 |
except Exception as e:
|
169 |
+
free_mem_gb = 6.0
|
170 |
+
print(f"CUDA 메모리 확인 중 오류 발생: {e} / 기본값 사용")
|
171 |
|
172 |
high_vram = free_mem_gb > 60
|
173 |
+
print(f'high_vram 모드: {high_vram}')
|
174 |
else:
|
175 |
+
# Spaces 환경에서 기본값 설정
|
176 |
+
print("Spaces 환경에서 기본 메모리 설정 사용")
|
177 |
try:
|
178 |
if GPU_AVAILABLE:
|
179 |
+
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
|
180 |
+
high_vram = free_mem_gb > 10 # 조금 더 보수적으로 설정
|
181 |
else:
|
182 |
+
free_mem_gb = 6.0
|
183 |
high_vram = False
|
184 |
except Exception as e:
|
185 |
+
print(f"GPU 메모리 확인 중 오류: {e}")
|
186 |
+
free_mem_gb = 6.0
|
187 |
high_vram = False
|
188 |
|
189 |
+
print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}')
|
190 |
|
191 |
+
# 전역 모델 ��조
|
192 |
models = {}
|
193 |
+
cpu_fallback_mode = not GPU_AVAILABLE # GPU가 불가능하면 CPU 모드로
|
194 |
|
|
|
195 |
def load_models():
|
196 |
global models, cpu_fallback_mode, GPU_INITIALIZED
|
197 |
|
198 |
if GPU_INITIALIZED:
|
199 |
+
print("모델이 이미 로드되었습니다. 다시 로드하지 않습니다.")
|
200 |
return models
|
201 |
|
202 |
+
print("모델 로드를 시작합니다...")
|
203 |
+
|
204 |
try:
|
|
|
205 |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
206 |
+
model_device = 'cpu' # 우선 CPU에 로드
|
207 |
+
|
208 |
+
# 기본적으로 GPU면 float16, CPU면 float32
|
209 |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
|
210 |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
|
211 |
|
212 |
+
print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}")
|
213 |
|
|
|
214 |
try:
|
215 |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
|
216 |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
|
|
|
223 |
|
224 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
|
225 |
|
226 |
+
print("모든 모델을 성공적으로 로드했습니다.")
|
227 |
except Exception as e:
|
228 |
+
print(f"모델 로드 중 오류 발생: {e}")
|
229 |
+
print("정밀도를 낮춰 다시 로드합니다...")
|
230 |
+
|
|
|
231 |
dtype = torch.float32
|
232 |
transformer_dtype = torch.float32
|
233 |
cpu_fallback_mode = True
|
|
|
243 |
|
244 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
|
245 |
|
246 |
+
print("CPU 모드로 모델 로드 성공")
|
247 |
|
248 |
vae.eval()
|
249 |
text_encoder.eval()
|
|
|
258 |
transformer.high_quality_fp32_output_for_inference = True
|
259 |
print('transformer.high_quality_fp32_output_for_inference = True')
|
260 |
|
|
|
261 |
if not cpu_fallback_mode:
|
262 |
transformer.to(dtype=transformer_dtype)
|
263 |
vae.to(dtype=dtype)
|
|
|
274 |
if torch.cuda.is_available() and not cpu_fallback_mode:
|
275 |
try:
|
276 |
if not high_vram:
|
277 |
+
# 메모리 최적화
|
278 |
DynamicSwapInstaller.install_model(transformer, device=device)
|
279 |
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
280 |
else:
|
|
|
283 |
image_encoder.to(device)
|
284 |
vae.to(device)
|
285 |
transformer.to(device)
|
286 |
+
print(f"모델을 {device}로 이동 완료")
|
287 |
except Exception as e:
|
288 |
+
print(f"{device}로 모델 이동 중 오류 발생: {e}")
|
289 |
+
print("CPU 모드로 전환")
|
290 |
cpu_fallback_mode = True
|
291 |
+
|
292 |
+
models_local = {
|
|
|
293 |
'text_encoder': text_encoder,
|
294 |
'text_encoder_2': text_encoder_2,
|
295 |
'tokenizer': tokenizer,
|
|
|
301 |
}
|
302 |
|
303 |
GPU_INITIALIZED = True
|
304 |
+
models.update(models_local)
|
305 |
+
print(f"모델 로드 완료. 현재 실행 모드: {'CPU' if cpu_fallback_mode else 'GPU'}")
|
306 |
return models
|
307 |
except Exception as e:
|
308 |
+
print(f"모델 로드 중 예상치 못한 오류가 발생: {e}")
|
309 |
traceback.print_exc()
|
310 |
|
|
|
311 |
error_info = {
|
312 |
"error": str(e),
|
313 |
"traceback": traceback.format_exc(),
|
|
|
315 |
"device": "cpu" if cpu_fallback_mode else "cuda",
|
316 |
}
|
317 |
|
|
|
318 |
try:
|
319 |
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
|
320 |
f.write(str(error_info))
|
321 |
except:
|
322 |
pass
|
323 |
|
|
|
324 |
cpu_fallback_mode = True
|
325 |
return {}
|
326 |
|
|
|
|
|
327 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
|
328 |
try:
|
329 |
@spaces.GPU
|
330 |
def initialize_models():
|
331 |
+
"""@spaces.GPU 환경에서 모델을 초기화"""
|
332 |
global GPU_INITIALIZED
|
333 |
try:
|
334 |
result = load_models()
|
335 |
GPU_INITIALIZED = True
|
336 |
return result
|
337 |
except Exception as e:
|
338 |
+
print(f"@spaces.GPU 모델 초기화 중 오류: {e}")
|
339 |
traceback.print_exc()
|
340 |
global cpu_fallback_mode
|
341 |
cpu_fallback_mode = True
|
|
|
342 |
return load_models()
|
343 |
except Exception as e:
|
344 |
+
print(f"spaces.GPU 데코레이터 생성 중 오류: {e}")
|
|
|
345 |
def initialize_models():
|
346 |
return load_models()
|
347 |
|
|
|
|
|
348 |
def get_models():
|
349 |
+
"""모델을 불러오거나 이미 불러왔다면 반환"""
|
350 |
global models, GPU_INITIALIZED
|
351 |
|
|
|
352 |
model_loading_key = "__model_loading__"
|
353 |
|
354 |
if not models:
|
|
|
355 |
if model_loading_key in globals():
|
356 |
+
print("모델 로딩 중입니다. 대기 중...")
|
|
|
357 |
import time
|
358 |
start_wait = time.time()
|
359 |
while not models and model_loading_key in globals():
|
360 |
time.sleep(0.5)
|
|
|
361 |
if time.time() - start_wait > 60:
|
362 |
+
print("모델 로딩 대기 시간 초과")
|
363 |
break
|
364 |
|
365 |
if models:
|
366 |
return models
|
367 |
|
368 |
try:
|
|
|
369 |
globals()[model_loading_key] = True
|
370 |
|
371 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
|
372 |
try:
|
373 |
+
print("GPU 데코레이터(@spaces.GPU)로 모델 로딩 시도")
|
374 |
+
models_local = initialize_models()
|
375 |
+
models.update(models_local)
|
376 |
except Exception as e:
|
377 |
+
print(f"GPU 데코레이터 로딩 실패: {e} / 직접 로딩 시도")
|
378 |
+
models_local = load_models()
|
379 |
+
models.update(models_local)
|
380 |
else:
|
381 |
+
print("모델 직접 로딩 시도")
|
382 |
+
models_local = load_models()
|
383 |
+
models.update(models_local)
|
384 |
except Exception as e:
|
385 |
+
print(f"모델 로드 중 오류: {e}")
|
386 |
traceback.print_exc()
|
387 |
+
models.clear()
|
|
|
388 |
finally:
|
|
|
389 |
if model_loading_key in globals():
|
390 |
del globals()[model_loading_key]
|
391 |
|
392 |
return models
|
393 |
|
|
|
394 |
stream = AsyncStream()
|
395 |
|
|
|
396 |
@torch.no_grad()
|
397 |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
398 |
global last_update_time
|
399 |
last_update_time = time.time()
|
400 |
|
|
|
401 |
total_second_length = min(total_second_length, 5.0)
|
402 |
|
|
|
403 |
try:
|
404 |
+
models_local = get_models()
|
405 |
+
if not models_local:
|
406 |
+
error_msg = "모델 로드에 실패했습니다. 로그를 확인하세요."
|
407 |
print(error_msg)
|
408 |
stream.output_queue.push(('error', error_msg))
|
409 |
stream.output_queue.push(('end', None))
|
410 |
return
|
411 |
|
412 |
+
text_encoder = models_local['text_encoder']
|
413 |
+
text_encoder_2 = models_local['text_encoder_2']
|
414 |
+
tokenizer = models_local['tokenizer']
|
415 |
+
tokenizer_2 = models_local['tokenizer_2']
|
416 |
+
vae = models_local['vae']
|
417 |
+
feature_extractor = models_local['feature_extractor']
|
418 |
+
image_encoder = models_local['image_encoder']
|
419 |
+
transformer = models_local['transformer']
|
420 |
except Exception as e:
|
421 |
+
error_msg = f"모델 가져오기 실패: {e}"
|
422 |
print(error_msg)
|
423 |
traceback.print_exc()
|
424 |
stream.output_queue.push(('error', error_msg))
|
425 |
stream.output_queue.push(('end', None))
|
426 |
return
|
427 |
|
|
|
428 |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
429 |
+
print(f"추론 디바이스: {device}")
|
430 |
+
|
|
|
431 |
if cpu_fallback_mode:
|
432 |
+
print("CPU 모드에서 일부 파라미터를 축소합니다.")
|
|
|
433 |
latent_window_size = min(latent_window_size, 5)
|
434 |
+
steps = min(steps, 15)
|
435 |
+
total_second_length = min(total_second_length, 2.0)
|
436 |
|
437 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
438 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
|
|
446 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
447 |
|
448 |
try:
|
|
|
449 |
if not high_vram and not cpu_fallback_mode:
|
450 |
try:
|
451 |
unload_complete_models(
|
452 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
453 |
)
|
454 |
except Exception as e:
|
455 |
+
print(f"모델 언로드 중 오류: {e}")
|
456 |
+
|
457 |
+
# 텍스트 인코딩
|
|
|
458 |
last_update_time = time.time()
|
459 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
460 |
|
|
|
473 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
474 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
475 |
except Exception as e:
|
476 |
+
error_msg = f"텍스트 인코딩 오류: {e}"
|
477 |
print(error_msg)
|
478 |
traceback.print_exc()
|
479 |
stream.output_queue.push(('error', error_msg))
|
480 |
stream.output_queue.push(('end', None))
|
481 |
return
|
482 |
|
483 |
+
# 입력 이미지 처리
|
484 |
last_update_time = time.time()
|
485 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
486 |
|
|
|
488 |
H, W, C = input_image.shape
|
489 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
490 |
|
|
|
491 |
if cpu_fallback_mode:
|
492 |
height = min(height, 320)
|
493 |
width = min(width, 320)
|
494 |
|
495 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
|
|
496 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
497 |
|
498 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
499 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
500 |
except Exception as e:
|
501 |
+
error_msg = f"이미지 전처리 오류: {e}"
|
502 |
print(error_msg)
|
503 |
traceback.print_exc()
|
504 |
stream.output_queue.push(('error', error_msg))
|
505 |
stream.output_queue.push(('end', None))
|
506 |
return
|
507 |
|
508 |
+
# VAE 인코딩
|
509 |
last_update_time = time.time()
|
510 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
511 |
|
|
|
515 |
|
516 |
start_latent = vae_encode(input_image_pt, vae)
|
517 |
except Exception as e:
|
518 |
+
error_msg = f"VAE 인코딩 오류: {e}"
|
519 |
print(error_msg)
|
520 |
traceback.print_exc()
|
521 |
stream.output_queue.push(('error', error_msg))
|
522 |
stream.output_queue.push(('end', None))
|
523 |
return
|
524 |
|
525 |
+
# CLIP Vision 인코딩
|
526 |
last_update_time = time.time()
|
527 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
528 |
|
|
|
533 |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
534 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
535 |
except Exception as e:
|
536 |
+
error_msg = f"CLIP Vision 인코딩 오류: {e}"
|
537 |
print(error_msg)
|
538 |
traceback.print_exc()
|
539 |
stream.output_queue.push(('error', error_msg))
|
540 |
stream.output_queue.push(('end', None))
|
541 |
return
|
542 |
|
543 |
+
# dtype 변환
|
544 |
try:
|
545 |
llama_vec = llama_vec.to(transformer.dtype)
|
546 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
|
|
548 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
549 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
550 |
except Exception as e:
|
551 |
+
error_msg = f"dtype 변환 오류: {e}"
|
552 |
print(error_msg)
|
553 |
traceback.print_exc()
|
554 |
stream.output_queue.push(('error', error_msg))
|
555 |
stream.output_queue.push(('end', None))
|
556 |
return
|
557 |
|
558 |
+
# 샘플링 진행
|
559 |
last_update_time = time.time()
|
560 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
561 |
|
|
|
567 |
history_pixels = None
|
568 |
total_generated_latent_frames = 0
|
569 |
except Exception as e:
|
570 |
+
error_msg = f"히스토리 상태 초기화 오류: {e}"
|
571 |
print(error_msg)
|
572 |
traceback.print_exc()
|
573 |
stream.output_queue.push(('error', error_msg))
|
|
|
575 |
return
|
576 |
|
577 |
latent_paddings = reversed(range(total_latent_sections))
|
|
|
578 |
if total_latent_sections > 4:
|
579 |
+
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
|
|
|
|
|
|
|
|
|
580 |
|
581 |
for latent_padding in latent_paddings:
|
582 |
last_update_time = time.time()
|
|
|
584 |
latent_padding_size = latent_padding * latent_window_size
|
585 |
|
586 |
if stream.input_queue.top() == 'end':
|
587 |
+
# 중단 신호 수신 시 부분 결과 반환
|
588 |
if history_pixels is not None and total_generated_latent_frames > 0:
|
589 |
try:
|
590 |
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
|
591 |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
592 |
stream.output_queue.push(('file', output_filename))
|
593 |
except Exception as e:
|
594 |
+
print(f"마지막 비디오 저장 오류: {e}")
|
595 |
|
596 |
stream.output_queue.push(('end', None))
|
597 |
return
|
|
|
607 |
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
608 |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
609 |
except Exception as e:
|
610 |
+
error_msg = f"샘플링 데이터 준비 오류: {e}"
|
611 |
print(error_msg)
|
612 |
traceback.print_exc()
|
|
|
613 |
if last_output_filename:
|
614 |
stream.output_queue.push(('file', last_output_filename))
|
615 |
continue
|
|
|
619 |
unload_complete_models()
|
620 |
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
|
621 |
except Exception as e:
|
622 |
+
print(f"transformer GPU 이동 오류: {e}")
|
|
|
623 |
|
624 |
if use_teacache and not cpu_fallback_mode:
|
625 |
try:
|
626 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
627 |
except Exception as e:
|
628 |
+
print(f"teacache 초기화 오류: {e}")
|
|
|
629 |
transformer.initialize_teacache(enable_teacache=False)
|
630 |
else:
|
631 |
transformer.initialize_teacache(enable_teacache=False)
|
|
|
635 |
last_update_time = time.time()
|
636 |
|
637 |
try:
|
638 |
+
if stream.input_queue.top() == 'end':
|
639 |
+
stream.output_queue.push(('end', None))
|
640 |
+
raise KeyboardInterrupt('사용자 중단 요청')
|
641 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
preview = d['denoised']
|
643 |
preview = vae_decode_fake(preview)
|
644 |
|
|
|
648 |
current_step = d['i'] + 1
|
649 |
percentage = int(100.0 * current_step / steps)
|
650 |
hint = f'Sampling {current_step}/{steps}'
|
651 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).'
|
652 |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
653 |
+
except KeyboardInterrupt:
|
|
|
|
|
|
|
654 |
raise
|
655 |
except Exception as e:
|
656 |
+
print(f"콜백 중 오류: {e}")
|
|
|
|
|
657 |
return
|
658 |
|
659 |
try:
|
660 |
sampling_start_time = time.time()
|
661 |
+
print(f"샘플링 시작, device: {device}, dtype: {transformer.dtype}, TeaCache: {use_teacache and not cpu_fallback_mode}")
|
662 |
|
663 |
try:
|
|
|
664 |
generated_latents = sample_hunyuan(
|
665 |
transformer=transformer,
|
666 |
sampler='unipc',
|
|
|
670 |
real_guidance_scale=cfg,
|
671 |
distilled_guidance_scale=gs,
|
672 |
guidance_rescale=rs,
|
|
|
673 |
num_inference_steps=steps,
|
674 |
generator=rnd,
|
675 |
prompt_embeds=llama_vec,
|
|
|
691 |
callback=callback,
|
692 |
)
|
693 |
|
694 |
+
print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초")
|
695 |
except KeyboardInterrupt as e:
|
696 |
+
print(f"사용자 중단: {e}")
|
|
|
|
|
|
|
|
|
697 |
if last_output_filename:
|
|
|
698 |
stream.output_queue.push(('file', last_output_filename))
|
699 |
+
error_msg = "사용자에 의해 중단되었지만, 일부 비디오가 생성되었습니다."
|
700 |
else:
|
701 |
+
error_msg = "사용자에 의해 중단되었습니다. 비디오가 생성되지 않았습니다."
|
|
|
702 |
|
|
|
703 |
stream.output_queue.push(('error', error_msg))
|
|
|
704 |
stream.output_queue.push(('end', None))
|
|
|
705 |
return
|
706 |
except Exception as e:
|
707 |
+
print(f"샘플링 중 오류: {e}")
|
708 |
traceback.print_exc()
|
|
|
|
|
709 |
if last_output_filename:
|
710 |
stream.output_queue.push(('file', last_output_filename))
|
711 |
+
error_msg = f"샘플링 중 오류(일부 비디오 생성됨): {e}"
|
|
|
|
|
712 |
stream.output_queue.push(('error', error_msg))
|
713 |
else:
|
714 |
+
error_msg = f"샘플링 중 오류: {e}"
|
|
|
715 |
stream.output_queue.push(('error', error_msg))
|
|
|
716 |
stream.output_queue.push(('end', None))
|
717 |
return
|
718 |
|
|
|
723 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
724 |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
725 |
except Exception as e:
|
726 |
+
error_msg = f"생성된 잠재 변수 처리 오류: {e}"
|
727 |
print(error_msg)
|
728 |
traceback.print_exc()
|
|
|
729 |
if last_output_filename:
|
730 |
stream.output_queue.push(('file', last_output_filename))
|
731 |
stream.output_queue.push(('error', error_msg))
|
|
|
737 |
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
|
738 |
load_model_as_complete(vae, target_device=device)
|
739 |
except Exception as e:
|
740 |
+
print(f"모델 메모리 관리 오류: {e}")
|
|
|
741 |
|
742 |
try:
|
743 |
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
744 |
except Exception as e:
|
745 |
+
error_msg = f"히스토리 잠재 변수 처리 오류: {e}"
|
746 |
print(error_msg)
|
|
|
747 |
if last_output_filename:
|
748 |
stream.output_queue.push(('file', last_output_filename))
|
749 |
continue
|
750 |
|
751 |
try:
|
752 |
vae_start_time = time.time()
|
753 |
+
print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}")
|
754 |
+
|
755 |
if history_pixels is None:
|
756 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
757 |
else:
|
|
|
761 |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
762 |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
763 |
|
764 |
+
print(f"VAE 디코딩 완료, 소요 시간: {time.time() - vae_start_time:.2f} 초")
|
765 |
+
|
766 |
if not high_vram and not cpu_fallback_mode:
|
767 |
try:
|
768 |
unload_complete_models()
|
769 |
except Exception as e:
|
770 |
+
print(f"모델 언로드 중 오류: {e}")
|
771 |
|
772 |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
773 |
|
774 |
save_start_time = time.time()
|
775 |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
776 |
+
print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초")
|
777 |
|
778 |
+
print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}')
|
779 |
|
780 |
last_output_filename = output_filename
|
781 |
stream.output_queue.push(('file', output_filename))
|
782 |
except Exception as e:
|
783 |
+
print(f"비디오 디코딩/저장 중 오류: {e}")
|
784 |
traceback.print_exc()
|
|
|
|
|
785 |
if last_output_filename:
|
786 |
stream.output_queue.push(('file', last_output_filename))
|
787 |
+
error_msg = f"비디오 디코딩/저장 오류: {e}"
|
|
|
|
|
788 |
stream.output_queue.push(('error', error_msg))
|
|
|
|
|
789 |
continue
|
790 |
|
791 |
if is_last_section:
|
792 |
break
|
793 |
except Exception as e:
|
794 |
+
print(f"처리 중 오류 발생: {e} (type: {type(e)})")
|
|
|
795 |
traceback.print_exc()
|
796 |
|
|
|
797 |
if isinstance(e, KeyboardInterrupt):
|
798 |
+
print("KeyboardInterrupt 발생")
|
799 |
|
800 |
if not high_vram and not cpu_fallback_mode:
|
801 |
try:
|
|
|
802 |
unload_complete_models(
|
803 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
804 |
)
|
|
|
805 |
except Exception as unload_error:
|
806 |
+
print(f"언로드 오류: {unload_error}")
|
|
|
807 |
|
|
|
808 |
if last_output_filename:
|
|
|
809 |
stream.output_queue.push(('file', last_output_filename))
|
|
|
|
|
810 |
|
811 |
+
error_msg = f"처리 중 오류: {e}"
|
|
|
|
|
812 |
stream.output_queue.push(('error', error_msg))
|
813 |
|
814 |
+
print("worker 함수 종료, 'end' 신호 전송")
|
|
|
815 |
stream.output_queue.push(('end', None))
|
816 |
return
|
817 |
|
|
|
|
|
818 |
if IN_HF_SPACE and 'spaces' in globals():
|
819 |
@spaces.GPU
|
820 |
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
821 |
global stream
|
822 |
assert input_image is not None, 'No input image!'
|
823 |
|
|
|
824 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
825 |
|
826 |
try:
|
827 |
stream = AsyncStream()
|
|
|
|
|
828 |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
829 |
|
830 |
output_filename = None
|
831 |
prev_output_filename = None
|
832 |
error_message = None
|
833 |
|
|
|
834 |
while True:
|
835 |
try:
|
836 |
flag, data = stream.output_queue.next()
|
|
|
838 |
if flag == 'file':
|
839 |
output_filename = data
|
840 |
prev_output_filename = output_filename
|
|
|
841 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
842 |
|
843 |
if flag == 'progress':
|
844 |
preview, desc, html = data
|
|
|
845 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
846 |
|
847 |
if flag == 'error':
|
848 |
error_message = data
|
849 |
+
print(f"오류 메시지 수신: {error_message}")
|
|
|
850 |
|
851 |
if flag == 'end':
|
|
|
852 |
if output_filename is None and prev_output_filename is not None:
|
853 |
output_filename = prev_output_filename
|
854 |
|
|
|
855 |
if error_message:
|
856 |
error_html = create_error_html(error_message)
|
857 |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
858 |
else:
|
|
|
859 |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
860 |
break
|
861 |
except Exception as e:
|
862 |
+
print(f"출력 처리 중 오류: {e}")
|
|
|
863 |
current_time = time.time()
|
864 |
+
if current_time - last_update_time > 60:
|
865 |
+
print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임아웃으로 간주.")
|
|
|
|
|
866 |
if prev_output_filename:
|
867 |
+
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
|
868 |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
869 |
else:
|
870 |
+
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
|
871 |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
872 |
break
|
|
|
873 |
except Exception as e:
|
874 |
+
print(f"프로세스 시작 오류: {e}")
|
875 |
traceback.print_exc()
|
876 |
error_msg = str(e)
|
877 |
|
|
|
884 |
global stream
|
885 |
assert input_image is not None, 'No input image!'
|
886 |
|
|
|
887 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
888 |
|
889 |
try:
|
890 |
stream = AsyncStream()
|
|
|
|
|
891 |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
892 |
|
893 |
output_filename = None
|
894 |
prev_output_filename = None
|
895 |
error_message = None
|
896 |
|
|
|
897 |
while True:
|
898 |
try:
|
899 |
flag, data = stream.output_queue.next()
|
|
|
901 |
if flag == 'file':
|
902 |
output_filename = data
|
903 |
prev_output_filename = output_filename
|
|
|
904 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
905 |
|
906 |
if flag == 'progress':
|
907 |
preview, desc, html = data
|
|
|
908 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
909 |
|
910 |
if flag == 'error':
|
911 |
error_message = data
|
912 |
+
print(f"오류 메시지 수신: {error_message}")
|
|
|
913 |
|
914 |
if flag == 'end':
|
|
|
915 |
if output_filename is None and prev_output_filename is not None:
|
916 |
output_filename = prev_output_filename
|
917 |
|
|
|
918 |
if error_message:
|
919 |
error_html = create_error_html(error_message)
|
920 |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
921 |
else:
|
|
|
922 |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
923 |
break
|
924 |
except Exception as e:
|
925 |
+
print(f"출력 처리 중 오류: {e}")
|
|
|
926 |
current_time = time.time()
|
927 |
+
if current_time - last_update_time > 60:
|
928 |
+
print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.")
|
|
|
|
|
929 |
if prev_output_filename:
|
930 |
+
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
|
931 |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
932 |
else:
|
933 |
+
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
|
934 |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
935 |
break
|
|
|
936 |
except Exception as e:
|
937 |
+
print(f"프로세스 시작 오류: {e}")
|
938 |
traceback.print_exc()
|
939 |
error_msg = str(e)
|
940 |
|
941 |
error_html = create_error_html(error_msg)
|
942 |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
943 |
|
|
|
944 |
def end_process():
|
945 |
+
print("사용자가 중지 버튼을 눌렀습니다. 종료 신호를 보냅니다...")
|
|
|
|
|
946 |
if 'stream' in globals() and stream is not None:
|
|
|
947 |
try:
|
948 |
current_top = stream.input_queue.top()
|
949 |
+
print(f"현재 입력 큐 top: {current_top}")
|
950 |
except Exception as e:
|
951 |
+
print(f"입력 큐 확인 오류: {e}")
|
|
|
|
|
952 |
try:
|
953 |
stream.input_queue.push('end')
|
954 |
+
print("end 신호 전송 완료")
|
|
|
|
|
955 |
try:
|
956 |
current_top_after = stream.input_queue.top()
|
957 |
+
print(f"신호 전송 후 입력 큐 top: {current_top_after}")
|
958 |
except Exception as e:
|
959 |
+
print(f"신호 전송 후 큐 상태 확인 오류: {e}")
|
|
|
960 |
except Exception as e:
|
961 |
+
print(f"end 신호 전송 오류: {e}")
|
962 |
else:
|
963 |
+
print("stream이 초기화되지 않아 종료 신호를 보낼 수 없습니다.")
|
964 |
return None
|
965 |
|
|
|
966 |
quick_prompts = [
|
967 |
'The girl dances gracefully, with clear movements, full of charm.',
|
968 |
'A character doing some simple body movements.',
|
969 |
]
|
970 |
quick_prompts = [[x] for x in quick_prompts]
|
971 |
|
|
|
|
|
972 |
def make_custom_css():
|
973 |
progress_bar_css = make_progress_bar_css()
|
974 |
|
975 |
responsive_css = """
|
976 |
+
/* progress_bar_css로부터 불러온 기본 설정 + 추가 */
|
977 |
+
|
978 |
#app-container {
|
979 |
max-width: 100%;
|
980 |
margin: 0 auto;
|
981 |
}
|
982 |
|
|
|
983 |
#language-toggle {
|
984 |
position: fixed;
|
985 |
top: 10px;
|
|
|
994 |
font-size: 14px;
|
995 |
}
|
996 |
|
|
|
997 |
h1 {
|
998 |
font-size: 2rem;
|
999 |
text-align: center;
|
1000 |
margin-bottom: 1rem;
|
1001 |
}
|
1002 |
|
|
|
1003 |
.start-btn, .stop-btn {
|
1004 |
min-height: 45px;
|
1005 |
font-size: 1rem;
|
1006 |
}
|
1007 |
|
|
|
1008 |
@media (max-width: 768px) {
|
1009 |
h1 {
|
1010 |
font-size: 1.5rem;
|
1011 |
margin-bottom: 0.5rem;
|
1012 |
}
|
1013 |
|
|
|
1014 |
.mobile-full-width {
|
1015 |
flex-direction: column !important;
|
1016 |
}
|
|
|
1020 |
flex-grow: 1;
|
1021 |
}
|
1022 |
|
|
|
1023 |
.video-container {
|
1024 |
height: auto !important;
|
1025 |
}
|
1026 |
|
|
|
1027 |
.button-container button {
|
1028 |
min-height: 50px;
|
1029 |
font-size: 1rem;
|
1030 |
touch-action: manipulation;
|
1031 |
}
|
1032 |
|
|
|
1033 |
.slider-container input[type="range"] {
|
1034 |
height: 30px;
|
1035 |
}
|
1036 |
}
|
1037 |
|
|
|
1038 |
@media (min-width: 769px) and (max-width: 1024px) {
|
1039 |
.tablet-adjust {
|
1040 |
width: 48% !important;
|
1041 |
}
|
1042 |
}
|
1043 |
|
|
|
1044 |
@media (prefers-color-scheme: dark) {
|
1045 |
.dark-mode-text {
|
1046 |
color: #f0f0f0;
|
1047 |
}
|
|
|
1048 |
.dark-mode-bg {
|
1049 |
background-color: #2a2a2a;
|
1050 |
}
|
1051 |
}
|
1052 |
|
|
|
1053 |
button, input, select, textarea {
|
1054 |
+
font-size: 16px;
|
1055 |
}
|
1056 |
|
|
|
1057 |
button, .interactive-element {
|
1058 |
min-height: 44px;
|
1059 |
min-width: 44px;
|
1060 |
}
|
1061 |
|
|
|
1062 |
.high-contrast {
|
1063 |
color: #fff;
|
1064 |
background-color: #000;
|
1065 |
}
|
1066 |
|
|
|
1067 |
.progress-container {
|
1068 |
margin-top: 10px;
|
1069 |
margin-bottom: 10px;
|
1070 |
}
|
1071 |
|
|
|
1072 |
#error-message {
|
1073 |
color: #ff4444;
|
1074 |
font-weight: bold;
|
|
|
1077 |
margin-top: 10px;
|
1078 |
}
|
1079 |
|
|
|
1080 |
.error-message {
|
1081 |
background-color: rgba(255, 0, 0, 0.1);
|
1082 |
padding: 10px;
|
|
|
1085 |
border: 1px solid #ffcccc;
|
1086 |
}
|
1087 |
|
1088 |
+
.error-msg-en, .error-msg-ko {
|
|
|
1089 |
font-weight: bold;
|
1090 |
}
|
1091 |
|
|
|
1092 |
.error-icon {
|
1093 |
color: #ff4444;
|
1094 |
font-size: 18px;
|
1095 |
margin-right: 8px;
|
1096 |
}
|
1097 |
|
|
|
1098 |
#error-message:empty {
|
1099 |
background-color: transparent;
|
1100 |
border: none;
|
|
|
1102 |
margin: 0;
|
1103 |
}
|
1104 |
|
|
|
1105 |
.error {
|
1106 |
display: none !important;
|
1107 |
}
|
1108 |
"""
|
1109 |
|
1110 |
+
return progress_bar_css + responsive_css
|
|
|
|
|
|
|
1111 |
|
1112 |
css = make_custom_css()
|
1113 |
block = gr.Blocks(css=css).queue()
|
1114 |
with block:
|
|
|
1115 |
gr.HTML("""
|
1116 |
<div id="app-container">
|
1117 |
+
<button id="language-toggle" onclick="toggleLanguage()">한국어 / English</button>
|
1118 |
</div>
|
1119 |
<script>
|
|
|
1120 |
window.currentLang = "en";
|
|
|
|
|
1121 |
function toggleLanguage() {
|
1122 |
+
window.currentLang = (window.currentLang === "en") ? "ko" : "en";
|
1123 |
|
|
|
1124 |
const elements = document.querySelectorAll('[data-i18n]');
|
|
|
|
|
1125 |
elements.forEach(el => {
|
1126 |
const key = el.getAttribute('data-i18n');
|
1127 |
const translations = {
|
|
|
1149 |
"next_latents": "Next Latents",
|
1150 |
"generated_video": "Generated Video",
|
1151 |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
|
1152 |
+
"error_message": "Error"
|
|
|
|
|
|
|
|
|
|
|
|
|
1153 |
},
|
1154 |
+
"ko": {
|
1155 |
+
"title": "FramePack - 이미지에서 동영상 생성",
|
1156 |
+
"upload_image": "이미지 업로드",
|
1157 |
+
"prompt": "프롬프트",
|
1158 |
+
"quick_prompts": "빠른 프롬프트 목록",
|
1159 |
+
"start_generation": "생성 시작",
|
1160 |
+
"stop_generation": "생성 중지",
|
1161 |
+
"use_teacache": "TeaCache 사용",
|
1162 |
+
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
|
1163 |
+
"negative_prompt": "부정 프롬프트",
|
1164 |
+
"seed": "랜덤 시드",
|
1165 |
+
"video_length": "동영상 길이 (최대 5초)",
|
1166 |
+
"latent_window": "잠재 윈도우 크기",
|
1167 |
+
"steps": "추론 스텝 수",
|
1168 |
+
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
1169 |
+
"cfg_scale": "CFG 스케일",
|
1170 |
+
"distilled_cfg": "증류된 CFG 스케일",
|
1171 |
+
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
1172 |
+
"cfg_rescale": "CFG 재스케일",
|
1173 |
+
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
|
1174 |
+
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
|
1175 |
+
"next_latents": "다음 잠재 변수",
|
1176 |
+
"generated_video": "생성된 동영상",
|
1177 |
+
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.",
|
1178 |
+
"error_message": "오류 메시지"
|
|
|
|
|
|
|
|
|
|
|
|
|
1179 |
}
|
1180 |
};
|
1181 |
|
1182 |
if (translations[window.currentLang] && translations[window.currentLang][key]) {
|
|
|
1183 |
if (el.tagName === 'BUTTON') {
|
1184 |
el.textContent = translations[window.currentLang][key];
|
1185 |
} else if (el.tagName === 'LABEL') {
|
|
|
1190 |
}
|
1191 |
});
|
1192 |
|
1193 |
+
// bilingual-label 처리
|
1194 |
document.querySelectorAll('.bilingual-label').forEach(el => {
|
1195 |
const enText = el.getAttribute('data-en');
|
1196 |
+
const koText = el.getAttribute('data-ko');
|
1197 |
+
el.textContent = (window.currentLang === 'en') ? enText : koText;
|
1198 |
});
|
1199 |
|
1200 |
+
// data-lang 처리
|
1201 |
document.querySelectorAll('[data-lang]').forEach(el => {
|
1202 |
+
el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none';
|
1203 |
});
|
1204 |
}
|
1205 |
|
|
|
1206 |
document.addEventListener('DOMContentLoaded', function() {
|
|
|
1207 |
setTimeout(() => {
|
1208 |
+
// 매핑
|
1209 |
const labelMap = {
|
1210 |
"Upload Image": "upload_image",
|
1211 |
+
"이미지 업로드": "upload_image",
|
1212 |
"Prompt": "prompt",
|
1213 |
+
"프롬프트": "prompt",
|
1214 |
"Quick Prompts": "quick_prompts",
|
1215 |
+
"빠른 ��롬프트 목록": "quick_prompts",
|
1216 |
+
"Generate": "start_generation",
|
1217 |
+
"생성 시작": "start_generation",
|
1218 |
"Stop": "stop_generation",
|
1219 |
+
"생성 중지": "stop_generation"
|
|
|
1220 |
};
|
1221 |
|
|
|
1222 |
document.querySelectorAll('label, span, button').forEach(el => {
|
1223 |
const text = el.textContent.trim();
|
1224 |
if (labelMap[text]) {
|
|
|
1226 |
}
|
1227 |
});
|
1228 |
|
|
|
1229 |
const titleEl = document.querySelector('h1');
|
1230 |
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
|
1231 |
|
|
|
1232 |
toggleLanguage();
|
1233 |
}, 1000);
|
1234 |
});
|
1235 |
</script>
|
1236 |
""")
|
1237 |
+
|
1238 |
+
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>")
|
1239 |
|
|
|
|
|
|
|
|
|
1240 |
with gr.Row(elem_classes="mobile-full-width"):
|
1241 |
with gr.Column(scale=1, elem_classes="mobile-full-width"):
|
|
|
1242 |
input_image = gr.Image(
|
1243 |
sources='upload',
|
1244 |
type="numpy",
|
1245 |
+
label="Upload Image",
|
1246 |
elem_id="input-image",
|
1247 |
height=320
|
1248 |
)
|
1249 |
|
|
|
1250 |
prompt = gr.Textbox(
|
1251 |
+
label="Prompt",
|
1252 |
value='',
|
1253 |
elem_id="prompt-input"
|
1254 |
)
|
1255 |
|
|
|
1256 |
example_quick_prompts = gr.Dataset(
|
1257 |
samples=quick_prompts,
|
1258 |
+
label='Quick Prompts',
|
1259 |
samples_per_page=1000,
|
1260 |
components=[prompt]
|
1261 |
)
|
1262 |
+
example_quick_prompts.click(
|
1263 |
+
lambda x: x[0],
|
1264 |
+
inputs=[example_quick_prompts],
|
1265 |
+
outputs=prompt,
|
1266 |
+
show_progress=False,
|
1267 |
+
queue=False
|
1268 |
+
)
|
1269 |
|
|
|
1270 |
with gr.Row(elem_classes="button-container"):
|
1271 |
start_button = gr.Button(
|
1272 |
+
value="Generate",
|
1273 |
elem_classes="start-btn",
|
1274 |
elem_id="start-button",
|
1275 |
variant="primary"
|
1276 |
)
|
1277 |
|
1278 |
end_button = gr.Button(
|
1279 |
+
value="Stop",
|
1280 |
elem_classes="stop-btn",
|
1281 |
elem_id="stop-button",
|
1282 |
interactive=False
|
1283 |
)
|
1284 |
|
|
|
1285 |
with gr.Group():
|
1286 |
use_teacache = gr.Checkbox(
|
1287 |
+
label='Use TeaCache',
|
1288 |
value=True,
|
1289 |
+
info='Faster speed, but may result in slightly worse finger and hand generation.'
|
1290 |
)
|
1291 |
|
1292 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
1293 |
|
1294 |
seed = gr.Number(
|
1295 |
+
label="Seed",
|
1296 |
value=31337,
|
1297 |
precision=0
|
1298 |
)
|
1299 |
+
|
|
|
1300 |
with gr.Group(elem_classes="slider-container"):
|
1301 |
total_second_length = gr.Slider(
|
1302 |
+
label="Video Length (max 5 seconds)",
|
1303 |
minimum=1,
|
1304 |
maximum=5,
|
1305 |
value=5,
|
|
|
1307 |
)
|
1308 |
|
1309 |
latent_window_size = gr.Slider(
|
1310 |
+
label="Latent Window Size",
|
1311 |
minimum=1,
|
1312 |
maximum=33,
|
1313 |
value=9,
|
|
|
1316 |
)
|
1317 |
|
1318 |
steps = gr.Slider(
|
1319 |
+
label="Inference Steps",
|
1320 |
minimum=1,
|
1321 |
maximum=100,
|
1322 |
value=25,
|
1323 |
step=1,
|
1324 |
+
info='Changing this value is not recommended.'
|
1325 |
)
|
1326 |
|
1327 |
cfg = gr.Slider(
|
|
|
1334 |
)
|
1335 |
|
1336 |
gs = gr.Slider(
|
1337 |
+
label="Distilled CFG Scale",
|
1338 |
minimum=1.0,
|
1339 |
maximum=32.0,
|
1340 |
value=10.0,
|
1341 |
step=0.01,
|
1342 |
+
info='Changing this value is not recommended.'
|
1343 |
)
|
1344 |
|
1345 |
rs = gr.Slider(
|
1346 |
+
label="CFG Rescale",
|
1347 |
minimum=0.0,
|
1348 |
maximum=1.0,
|
1349 |
value=0.0,
|
|
|
1352 |
)
|
1353 |
|
1354 |
gpu_memory_preservation = gr.Slider(
|
1355 |
+
label="GPU Memory (GB)",
|
1356 |
minimum=6,
|
1357 |
maximum=128,
|
1358 |
value=6,
|
1359 |
step=0.1,
|
1360 |
+
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed."
|
1361 |
)
|
1362 |
|
|
|
1363 |
with gr.Column(scale=1, elem_classes="mobile-full-width"):
|
|
|
1364 |
preview_image = gr.Image(
|
1365 |
+
label="Preview",
|
1366 |
height=200,
|
1367 |
visible=False,
|
1368 |
elem_classes="preview-container"
|
1369 |
)
|
1370 |
|
|
|
1371 |
result_video = gr.Video(
|
1372 |
+
label="Generated Video",
|
1373 |
autoplay=True,
|
1374 |
+
show_share_button=True,
|
1375 |
height=512,
|
1376 |
loop=True,
|
1377 |
elem_classes="video-container",
|
1378 |
elem_id="result-video"
|
1379 |
)
|
1380 |
|
1381 |
+
gr.HTML("<div data-i18n='sampling_note'>Note: Due to reversed sampling, ending actions will be generated before starting actions.</div>")
|
|
|
1382 |
|
|
|
1383 |
with gr.Group(elem_classes="progress-container"):
|
1384 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
1385 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1386 |
|
|
|
1387 |
error_message = gr.HTML('', elem_id='error-message', visible=True)
|
1388 |
|
|
|
1389 |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
|
|
|
|
|
|
|
|
1390 |
|
1391 |
+
start_button.click(fn=process, inputs=ips, outputs=[
|
1392 |
+
result_video, preview_image, progress_desc, progress_bar, start_button, end_button
|
1393 |
+
])
|
1394 |
+
end_button.click(fn=end_process)
|
1395 |
|
1396 |
+
block.launch()
|
1397 |
|
|
|
1398 |
def create_error_html(error_msg, is_timeout=False):
|
|
|
|
|
1399 |
en_msg = ""
|
1400 |
+
ko_msg = ""
|
1401 |
|
1402 |
if is_timeout:
|
1403 |
+
if "부분" in error_msg or "partial" in error_msg:
|
1404 |
+
en_msg = "Processing timed out, but partial video has been generated."
|
1405 |
+
ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다."
|
1406 |
+
else:
|
1407 |
+
en_msg = f"Processing timed out: {error_msg}"
|
1408 |
+
ko_msg = f"처리 시간 초과: {error_msg}"
|
1409 |
+
elif "모델 로드" in error_msg:
|
1410 |
+
en_msg = "Failed to load models. Possibly heavy traffic or GPU problem."
|
1411 |
+
ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다."
|
1412 |
+
elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg:
|
1413 |
+
en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length."
|
1414 |
+
ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요."
|
1415 |
+
elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg:
|
1416 |
+
if "부분" in error_msg or "partial" in error_msg:
|
1417 |
+
en_msg = "Error during sampling, but partial video has been generated."
|
1418 |
+
ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다."
|
1419 |
else:
|
1420 |
+
en_msg = "Error during sampling. Unable to generate video."
|
1421 |
+
ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다."
|
1422 |
+
elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg:
|
1423 |
+
en_msg = "Network is unstable, model download timed out. Please try again later."
|
1424 |
+
ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요."
|
1425 |
+
elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg:
|
1426 |
+
en_msg = "Error during video decoding or saving process. Try a different seed."
|
1427 |
+
ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요."
|
1428 |
else:
|
1429 |
en_msg = f"Processing error: {error_msg}"
|
1430 |
+
ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}"
|
1431 |
|
|
|
1432 |
return f"""
|
1433 |
<div class="error-message" id="custom-error-container">
|
1434 |
<div class="error-msg-en" data-lang="en">
|
1435 |
<span class="error-icon">⚠️</span> {en_msg}
|
1436 |
</div>
|
1437 |
+
<div class="error-msg-ko" data-lang="ko">
|
1438 |
+
<span class="error-icon">⚠️</span> {ko_msg}
|
1439 |
</div>
|
1440 |
</div>
|
1441 |
<script>
|
|
|
1442 |
(function() {{
|
1443 |
const errorContainer = document.getElementById('custom-error-container');
|
1444 |
if (errorContainer) {{
|
1445 |
+
const currentLang = window.currentLang || 'en';
|
1446 |
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
|
1447 |
errMsgs.forEach(msg => {{
|
1448 |
+
msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none';
|
1449 |
}});
|
|
|
|
|
1450 |
const defaultErrorElements = document.querySelectorAll('.error');
|
1451 |
defaultErrorElements.forEach(el => {{
|
1452 |
el.style.display = 'none';
|
|
|
1454 |
}}
|
1455 |
}})();
|
1456 |
</script>
|
1457 |
+
"""
|