framepack-i2v / app.py
ginipick's picture
Update app.py
0127c1b verified
import os
os.environ['HF_HOME'] = os.path.abspath(
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
)
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel,
LlamaTokenizerFast, CLIPTokenizer
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode,
vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask,
soft_append_bcthw, resize_and_center_crop,
state_dict_weighted_merge, state_dict_offset_merge,
generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu, gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
# Check GPU memory
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
# Load models
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=torch.float16
).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=torch.float16
).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
'lllyasviel/FramePack_F1_I2V_HY_20250503',
torch_dtype=torch.bfloat16
).cpu()
# Evaluation mode
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
# Slicing/Tiling for low VRAM
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
# Move to correct dtype
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
# No gradient
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
# DynamicSwap if low VRAM
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
examples = [
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
]
# Example generation (optional)
def generate_examples(input_image, prompt):
t2v=False
n_prompt=""
seed=31337
total_second_length=5
latent_window_size=9
steps=25
cfg=1.0
gs=10.0
rs=0.0
gpu_memory_preservation=6
use_teacache=True
mp4_crf=16
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
@torch.no_grad()
def worker(
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
):
# Calculate total sections
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Unload if VRAM is low
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Process image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Convert dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Start sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents = torch.zeros(
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
dtype=torch.float32
).cpu()
history_pixels = None
# Add start_latent
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
total_generated_latent_frames = 1
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=gpu,
preserved_memory_gb=gpu_memory_preservation
)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
indices = torch.arange(
0, sum([1, 16, 2, 1, latent_window_size])
).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
:, :, -sum([16, 2, 1]):, :, :
].split([16, 2, 1], dim=2)
clean_latents = torch.cat(
[start_latent.to(history_latents), clean_latents_1x],
dim=2
)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(
real_history_latents[:, :, -section_latent_frames:], vae
).cpu()
history_pixels = soft_append_bcthw(
history_pixels, current_pixels, overlapped_frames
)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
stream.output_queue.push(('end', None))
return
def get_duration(
input_image, prompt, t2v, n_prompt,
seed, total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf
):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(
input_image, prompt, t2v=False, n_prompt="", seed=31337,
total_second_length=5, latent_window_size=9, steps=25,
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
use_teacache=True, mp4_crf=16
):
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
else:
composite_rgba_uint8 = input_image["composite"]
rgb_uint8 = composite_rgba_uint8[:, :, :3]
mask_uint8 = composite_rgba_uint8[:, :, 3]
h, w = rgb_uint8.shape[:2]
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.'
]
quick_prompts = [[x] for x in quick_prompts]
def make_custom_css():
base_progress_css = make_progress_bar_css()
extra_css = """
body {
background: #fafbfe !important;
font-family: "Noto Sans", sans-serif;
}
#title-container {
text-align: center;
padding: 20px 0;
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
border-radius: 0 0 10px 10px;
margin-bottom: 20px;
}
#title-container h1 {
color: white;
font-size: 2rem;
margin: 0;
font-weight: 800;
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
}
.gr-panel {
background: #ffffffcc;
backdrop-filter: blur(4px);
border: 1px solid #dcdcf7;
border-radius: 12px;
padding: 16px;
margin-bottom: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.gr-box > label {
font-size: 0.9rem;
font-weight: 600;
color: #333;
}
.button-container button {
min-height: 48px;
font-size: 1rem;
font-weight: 600;
border-radius: 8px;
border: none !important;
}
.button-container button#start-button {
background-color: #4b9ffa !important;
color: #fff;
}
.button-container button#stop-button {
background-color: #ef5d84 !important;
color: #fff;
}
.button-container button:hover {
filter: brightness(0.97);
}
.no-generating-animation {
margin-top: 10px;
margin-bottom: 10px;
}
"""
return base_progress_css + extra_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
# Title (use gr.Group instead of gr.Box for older Gradio versions)
with gr.Group(elem_id="title-container"):
gr.Markdown("<h1>FramePack I2V</h1>")
gr.Markdown("""
### Video diffusion, but feels like image diffusion
FramePack I2V - a model that predicts future frames from past frames,
letting you generate short animations from a single image plus text prompt.
""")
with gr.Row():
with gr.Column():
input_image = gr.ImageEditor(
type="numpy",
label="Image Editor (use Brush for mask)",
height=320,
brush=gr.Brush(colors=["#ffffff"])
)
prompt = gr.Textbox(label="Prompt", value='')
t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False)
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label="Quick Prompts",
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(
fn=lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(value="Start Generation", elem_id="start-button")
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
total_second_length = gr.Slider(
label="Total Video Length (Seconds)",
minimum=1,
maximum=5,
value=2,
step=0.1
)
with gr.Group():
with gr.Accordion("Advanced Settings", open=False):
use_teacache = gr.Checkbox(
label='Use TeaCache',
value=True,
info='Faster speed, but may worsen hands/fingers.'
)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
seed = gr.Number(label="Seed", value=31337, precision=0)
latent_window_size = gr.Slider(
label="Latent Window Size",
minimum=1, maximum=33,
value=9, step=1,
visible=False
)
steps = gr.Slider(
label="Steps",
minimum=1, maximum=100,
value=25, step=1,
info='Not recommended to change drastically.'
)
cfg = gr.Slider(
label="CFG Scale",
minimum=1.0, maximum=32.0,
value=1.0, step=0.01,
visible=False
)
gs = gr.Slider(
label="Distilled CFG Scale",
minimum=1.0, maximum=32.0,
value=10.0, step=0.01,
info='Not recommended to change drastically.'
)
rs = gr.Slider(
label="CFG Re-Scale",
minimum=0.0, maximum=1.0,
value=0.0, step=0.01,
visible=False
)
gpu_memory_preservation = gr.Slider(
label="GPU Memory Preservation (GB)",
minimum=6, maximum=128,
value=6, step=0.1,
info="Increase if OOM occurs, but slower."
)
mp4_crf = gr.Slider(
label="MP4 Compression (CRF)",
minimum=0, maximum=100,
value=16, step=1,
info="Lower = better quality. 16 recommended."
)
with gr.Column():
preview_image = gr.Image(
label="Preview Latents",
height=200,
visible=False
)
result_video = gr.Video(
label="Finished Frames",
autoplay=True,
show_share_button=False,
height=512,
loop=True
)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
ips = [
input_image, prompt, t2v, n_prompt, seed,
total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf
]
start_button.click(
fn=process,
inputs=ips,
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
)
end_button.click(fn=end_process)
block.launch(share=True)