Spaces:
Running
on
Zero
Running
on
Zero
import os | |
os.environ['HF_HOME'] = os.path.abspath( | |
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')) | |
) | |
import gradio as gr | |
import torch | |
import traceback | |
import einops | |
import safetensors.torch as sf | |
import numpy as np | |
import math | |
import spaces | |
from PIL import Image | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import ( | |
LlamaModel, CLIPTextModel, | |
LlamaTokenizerFast, CLIPTokenizer | |
) | |
from diffusers_helper.hunyuan import ( | |
encode_prompt_conds, vae_decode, | |
vae_encode, vae_decode_fake | |
) | |
from diffusers_helper.utils import ( | |
save_bcthw_as_mp4, crop_or_pad_yield_mask, | |
soft_append_bcthw, resize_and_center_crop, | |
state_dict_weighted_merge, state_dict_offset_merge, | |
generate_timestamp | |
) | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import ( | |
cpu, gpu, | |
get_cuda_free_memory_gb, | |
move_model_to_device_with_memory_preservation, | |
offload_model_from_device_for_memory_preservation, | |
fake_diffusers_current_device, | |
DynamicSwapInstaller, | |
unload_complete_models, | |
load_model_as_complete | |
) | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from transformers import SiglipImageProcessor, SiglipVisionModel | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
# Check GPU memory | |
free_mem_gb = get_cuda_free_memory_gb(gpu) | |
high_vram = free_mem_gb > 60 | |
print(f'Free VRAM {free_mem_gb} GB') | |
print(f'High-VRAM Mode: {high_vram}') | |
# Load models | |
text_encoder = LlamaModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder', | |
torch_dtype=torch.float16 | |
).cpu() | |
text_encoder_2 = CLIPTextModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder_2', | |
torch_dtype=torch.float16 | |
).cpu() | |
tokenizer = LlamaTokenizerFast.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer' | |
) | |
tokenizer_2 = CLIPTokenizer.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer_2' | |
) | |
vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='vae', | |
torch_dtype=torch.float16 | |
).cpu() | |
feature_extractor = SiglipImageProcessor.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='feature_extractor' | |
) | |
image_encoder = SiglipVisionModel.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='image_encoder', | |
torch_dtype=torch.float16 | |
).cpu() | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
'lllyasviel/FramePack_F1_I2V_HY_20250503', | |
torch_dtype=torch.bfloat16 | |
).cpu() | |
# Evaluation mode | |
vae.eval() | |
text_encoder.eval() | |
text_encoder_2.eval() | |
image_encoder.eval() | |
transformer.eval() | |
# Slicing/Tiling for low VRAM | |
if not high_vram: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
print('transformer.high_quality_fp32_output_for_inference = True') | |
# Move to correct dtype | |
transformer.to(dtype=torch.bfloat16) | |
vae.to(dtype=torch.float16) | |
image_encoder.to(dtype=torch.float16) | |
text_encoder.to(dtype=torch.float16) | |
text_encoder_2.to(dtype=torch.float16) | |
# No gradient | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
text_encoder_2.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
# DynamicSwap if low VRAM | |
if not high_vram: | |
DynamicSwapInstaller.install_model(transformer, device=gpu) | |
DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
else: | |
text_encoder.to(gpu) | |
text_encoder_2.to(gpu) | |
image_encoder.to(gpu) | |
vae.to(gpu) | |
transformer.to(gpu) | |
stream = AsyncStream() | |
outputs_folder = './outputs/' | |
os.makedirs(outputs_folder, exist_ok=True) | |
examples = [ | |
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."], | |
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."], | |
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."] | |
] | |
# Example generation (optional) | |
def generate_examples(input_image, prompt): | |
t2v=False | |
n_prompt="" | |
seed=31337 | |
total_second_length=5 | |
latent_window_size=9 | |
steps=25 | |
cfg=1.0 | |
gs=10.0 | |
rs=0.0 | |
gpu_memory_preservation=6 | |
use_teacache=True | |
mp4_crf=16 | |
global stream | |
if t2v: | |
default_height, default_width = 640, 640 | |
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 | |
print("No input image provided. Using a blank white image.") | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
stream = AsyncStream() | |
async_run( | |
worker, input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
) | |
output_filename = None | |
while True: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
yield ( | |
output_filename, | |
gr.update(), | |
gr.update(), | |
gr.update(), | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
if flag == 'progress': | |
preview, desc, html = data | |
yield ( | |
gr.update(), | |
gr.update(visible=True, value=preview), | |
desc, | |
html, | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
if flag == 'end': | |
yield ( | |
output_filename, | |
gr.update(visible=False), | |
gr.update(), | |
'', | |
gr.update(interactive=True), | |
gr.update(interactive=False) | |
) | |
break | |
def worker( | |
input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
): | |
# Calculate total sections | |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
total_latent_sections = int(max(round(total_latent_sections), 1)) | |
job_id = generate_timestamp() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
try: | |
# Unload if VRAM is low | |
if not high_vram: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
# Text encoding | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
if not high_vram: | |
fake_diffusers_current_device(text_encoder, gpu) | |
load_model_as_complete(text_encoder_2, target_device=gpu) | |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
else: | |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
# Process image | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
H, W, C = input_image.shape | |
height, width = find_nearest_bucket(H, W, resolution=640) | |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
# VAE encoding | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
if not high_vram: | |
load_model_as_complete(vae, target_device=gpu) | |
start_latent = vae_encode(input_image_pt, vae) | |
# CLIP Vision | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
if not high_vram: | |
load_model_as_complete(image_encoder, target_device=gpu) | |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
# Convert dtype | |
llama_vec = llama_vec.to(transformer.dtype) | |
llama_vec_n = llama_vec_n.to(transformer.dtype) | |
clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
# Start sampling | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
rnd = torch.Generator("cpu").manual_seed(seed) | |
history_latents = torch.zeros( | |
size=(1, 16, 16 + 2 + 1, height // 8, width // 8), | |
dtype=torch.float32 | |
).cpu() | |
history_pixels = None | |
# Add start_latent | |
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2) | |
total_generated_latent_frames = 1 | |
for section_index in range(total_latent_sections): | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
return | |
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') | |
if not high_vram: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation( | |
transformer, target_device=gpu, | |
preserved_memory_gb=gpu_memory_preservation | |
) | |
if use_teacache: | |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
else: | |
transformer.initialize_teacache(enable_teacache=False) | |
def callback(d): | |
preview = d['denoised'] | |
preview = vae_decode_fake(preview) | |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
raise KeyboardInterrupt('User ends the task.') | |
current_step = d['i'] + 1 | |
percentage = int(100.0 * current_step / steps) | |
hint = f'Sampling {current_step}/{steps}' | |
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}' | |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
return | |
indices = torch.arange( | |
0, sum([1, 16, 2, 1, latent_window_size]) | |
).unsqueeze(0) | |
( | |
clean_latent_indices_start, | |
clean_latent_4x_indices, | |
clean_latent_2x_indices, | |
clean_latent_1x_indices, | |
latent_indices | |
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1) | |
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) | |
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[ | |
:, :, -sum([16, 2, 1]):, :, : | |
].split([16, 2, 1], dim=2) | |
clean_latents = torch.cat( | |
[start_latent.to(history_latents), clean_latents_1x], | |
dim=2 | |
) | |
generated_latents = sample_hunyuan( | |
transformer=transformer, | |
sampler='unipc', | |
width=width, | |
height=height, | |
frames=latent_window_size * 4 - 3, | |
real_guidance_scale=cfg, | |
distilled_guidance_scale=gs, | |
guidance_rescale=rs, | |
num_inference_steps=steps, | |
generator=rnd, | |
prompt_embeds=llama_vec, | |
prompt_embeds_mask=llama_attention_mask, | |
prompt_poolers=clip_l_pooler, | |
negative_prompt_embeds=llama_vec_n, | |
negative_prompt_embeds_mask=llama_attention_mask_n, | |
negative_prompt_poolers=clip_l_pooler_n, | |
device=gpu, | |
dtype=torch.bfloat16, | |
image_embeddings=image_encoder_last_hidden_state, | |
latent_indices=latent_indices, | |
clean_latents=clean_latents, | |
clean_latent_indices=clean_latent_indices, | |
clean_latents_2x=clean_latents_2x, | |
clean_latent_2x_indices=clean_latent_2x_indices, | |
clean_latents_4x=clean_latents_4x, | |
clean_latent_4x_indices=clean_latent_4x_indices, | |
callback=callback, | |
) | |
total_generated_latent_frames += int(generated_latents.shape[2]) | |
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) | |
if not high_vram: | |
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) | |
load_model_as_complete(vae, target_device=gpu) | |
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] | |
if history_pixels is None: | |
history_pixels = vae_decode(real_history_latents, vae).cpu() | |
else: | |
section_latent_frames = latent_window_size * 2 | |
overlapped_frames = latent_window_size * 4 - 3 | |
current_pixels = vae_decode( | |
real_history_latents[:, :, -section_latent_frames:], vae | |
).cpu() | |
history_pixels = soft_append_bcthw( | |
history_pixels, current_pixels, overlapped_frames | |
) | |
if not high_vram: | |
unload_complete_models() | |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') | |
stream.output_queue.push(('file', output_filename)) | |
except: | |
traceback.print_exc() | |
if not high_vram: | |
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer) | |
stream.output_queue.push(('end', None)) | |
return | |
def get_duration( | |
input_image, prompt, t2v, n_prompt, | |
seed, total_second_length, latent_window_size, | |
steps, cfg, gs, rs, gpu_memory_preservation, | |
use_teacache, mp4_crf | |
): | |
return total_second_length * 60 | |
def process( | |
input_image, prompt, t2v=False, n_prompt="", seed=31337, | |
total_second_length=5, latent_window_size=9, steps=25, | |
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6, | |
use_teacache=True, mp4_crf=16 | |
): | |
global stream | |
if t2v: | |
default_height, default_width = 640, 640 | |
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 | |
print("No input image provided. Using a blank white image.") | |
else: | |
composite_rgba_uint8 = input_image["composite"] | |
rgb_uint8 = composite_rgba_uint8[:, :, :3] | |
mask_uint8 = composite_rgba_uint8[:, :, 3] | |
h, w = rgb_uint8.shape[:2] | |
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8) | |
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0 | |
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2) | |
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \ | |
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32) | |
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8) | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
stream = AsyncStream() | |
async_run( | |
worker, input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
) | |
output_filename = None | |
while True: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
yield ( | |
output_filename, | |
gr.update(), | |
gr.update(), | |
gr.update(), | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
elif flag == 'progress': | |
preview, desc, html = data | |
yield ( | |
gr.update(), | |
gr.update(visible=True, value=preview), | |
desc, | |
html, | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
elif flag == 'end': | |
yield ( | |
output_filename, | |
gr.update(visible=False), | |
gr.update(), | |
'', | |
gr.update(interactive=True), | |
gr.update(interactive=False) | |
) | |
break | |
def end_process(): | |
stream.input_queue.push('end') | |
quick_prompts = [ | |
'The girl dances gracefully, with clear movements, full of charm.', | |
'A character doing some simple body movements.' | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
def make_custom_css(): | |
base_progress_css = make_progress_bar_css() | |
extra_css = """ | |
body { | |
background: #fafbfe !important; | |
font-family: "Noto Sans", sans-serif; | |
} | |
#title-container { | |
text-align: center; | |
padding: 20px 0; | |
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%); | |
border-radius: 0 0 10px 10px; | |
margin-bottom: 20px; | |
} | |
#title-container h1 { | |
color: white; | |
font-size: 2rem; | |
margin: 0; | |
font-weight: 800; | |
text-shadow: 1px 2px 2px rgba(0,0,0,0.1); | |
} | |
.gr-panel { | |
background: #ffffffcc; | |
backdrop-filter: blur(4px); | |
border: 1px solid #dcdcf7; | |
border-radius: 12px; | |
padding: 16px; | |
margin-bottom: 8px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.gr-box > label { | |
font-size: 0.9rem; | |
font-weight: 600; | |
color: #333; | |
} | |
.button-container button { | |
min-height: 48px; | |
font-size: 1rem; | |
font-weight: 600; | |
border-radius: 8px; | |
border: none !important; | |
} | |
.button-container button#start-button { | |
background-color: #4b9ffa !important; | |
color: #fff; | |
} | |
.button-container button#stop-button { | |
background-color: #ef5d84 !important; | |
color: #fff; | |
} | |
.button-container button:hover { | |
filter: brightness(0.97); | |
} | |
.no-generating-animation { | |
margin-top: 10px; | |
margin-bottom: 10px; | |
} | |
""" | |
return base_progress_css + extra_css | |
css = make_custom_css() | |
block = gr.Blocks(css=css).queue() | |
with block: | |
# Title (use gr.Group instead of gr.Box for older Gradio versions) | |
with gr.Group(elem_id="title-container"): | |
gr.Markdown("<h1>FramePack I2V</h1>") | |
gr.Markdown(""" | |
### Video diffusion, but feels like image diffusion | |
FramePack I2V - a model that predicts future frames from past frames, | |
letting you generate short animations from a single image plus text prompt. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.ImageEditor( | |
type="numpy", | |
label="Image Editor (use Brush for mask)", | |
height=320, | |
brush=gr.Brush(colors=["#ffffff"]) | |
) | |
prompt = gr.Textbox(label="Prompt", value='') | |
t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False) | |
example_quick_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label="Quick Prompts", | |
samples_per_page=1000, | |
components=[prompt] | |
) | |
example_quick_prompts.click( | |
fn=lambda x: x[0], | |
inputs=[example_quick_prompts], | |
outputs=prompt, | |
show_progress=False, | |
queue=False | |
) | |
with gr.Row(elem_classes="button-container"): | |
start_button = gr.Button(value="Start Generation", elem_id="start-button") | |
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False) | |
total_second_length = gr.Slider( | |
label="Total Video Length (Seconds)", | |
minimum=1, | |
maximum=5, | |
value=2, | |
step=0.1 | |
) | |
with gr.Group(): | |
with gr.Accordion("Advanced Settings", open=False): | |
use_teacache = gr.Checkbox( | |
label='Use TeaCache', | |
value=True, | |
info='Faster speed, but may worsen hands/fingers.' | |
) | |
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) | |
seed = gr.Number(label="Seed", value=31337, precision=0) | |
latent_window_size = gr.Slider( | |
label="Latent Window Size", | |
minimum=1, maximum=33, | |
value=9, step=1, | |
visible=False | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=1, maximum=100, | |
value=25, step=1, | |
info='Not recommended to change drastically.' | |
) | |
cfg = gr.Slider( | |
label="CFG Scale", | |
minimum=1.0, maximum=32.0, | |
value=1.0, step=0.01, | |
visible=False | |
) | |
gs = gr.Slider( | |
label="Distilled CFG Scale", | |
minimum=1.0, maximum=32.0, | |
value=10.0, step=0.01, | |
info='Not recommended to change drastically.' | |
) | |
rs = gr.Slider( | |
label="CFG Re-Scale", | |
minimum=0.0, maximum=1.0, | |
value=0.0, step=0.01, | |
visible=False | |
) | |
gpu_memory_preservation = gr.Slider( | |
label="GPU Memory Preservation (GB)", | |
minimum=6, maximum=128, | |
value=6, step=0.1, | |
info="Increase if OOM occurs, but slower." | |
) | |
mp4_crf = gr.Slider( | |
label="MP4 Compression (CRF)", | |
minimum=0, maximum=100, | |
value=16, step=1, | |
info="Lower = better quality. 16 recommended." | |
) | |
with gr.Column(): | |
preview_image = gr.Image( | |
label="Preview Latents", | |
height=200, | |
visible=False | |
) | |
result_video = gr.Video( | |
label="Finished Frames", | |
autoplay=True, | |
show_share_button=False, | |
height=512, | |
loop=True | |
) | |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation') | |
progress_bar = gr.HTML('', elem_classes='no-generating-animation') | |
ips = [ | |
input_image, prompt, t2v, n_prompt, seed, | |
total_second_length, latent_window_size, | |
steps, cfg, gs, rs, gpu_memory_preservation, | |
use_teacache, mp4_crf | |
] | |
start_button.click( | |
fn=process, | |
inputs=ips, | |
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button] | |
) | |
end_button.click(fn=end_process) | |
block.launch(share=True) | |