Spaces:
Running
Running
File size: 37,797 Bytes
8b8afd7 14de218 8b8afd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
# ββββββββββββββββββββββββββββββββ Imports ββββββββββββββββββββββββββββββββ
import os, json, re, logging, requests, markdown, time, io
from datetime import datetime
import streamlit as st
from openai import OpenAI # OpenAI λΌμ΄λΈλ¬λ¦¬
from gradio_client import Client
import pandas as pd
import PyPDF2 # For handling PDF files
# ββββββββββββββββββββββββββββββββ Environment Variables / Constants βββββββββββββββββββββββββ
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
BRAVE_KEY = os.getenv("SERPHOUSE_API_KEY", "") # Keep this name
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
IMAGE_API_URL = "http://211.233.58.201:7896"
MAX_TOKENS = 7999
# Blog template and style definitions (in English)
BLOG_TEMPLATES = {
"ginigen": "Recommended style by Ginigen",
"standard": "Standard 8-step framework blog",
"tutorial": "Step-by-step tutorial format",
"review": "Product/service review format",
"storytelling": "Storytelling format",
"seo_optimized": "SEO-optimized blog"
}
BLOG_TONES = {
"professional": "Professional and formal tone",
"casual": "Friendly and conversational tone",
"humorous": "Humorous approach",
"storytelling": "Story-driven approach"
}
# Example blog topics
EXAMPLE_TOPICS = {
"example1": "Changes to the real estate tax system in 2025: Impact on average households and tax-saving strategies",
"example2": "Summer festivals in 2025: A comprehensive guide to major regional events and hidden attractions",
"example3": "Emerging industries to watch in 2025: An investment guide focused on AI opportunities"
}
# ββββββββββββββββββββββββββββββββ Logging ββββββββββββββββββββββββββββββββ
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
# ββββββββββββββββββββββββββββββββ OpenAI Client ββββββββββββββββββββββββββ
# OpenAI ν΄λΌμ΄μΈνΈμ νμμμκ³Ό μ¬μλ λ‘μ§ μΆκ°
@st.cache_resource
def get_openai_client():
"""Create an OpenAI client with timeout and retry settings."""
if not OPENAI_API_KEY:
raise RuntimeError("β οΈ OPENAI_API_KEY νκ²½ λ³μκ° μ€μ λμ§ μμμ΅λλ€.")
return OpenAI(
api_key=OPENAI_API_KEY,
timeout=60.0, # νμμμ 60μ΄λ‘ μ€μ
max_retries=3 # μ¬μλ νμ 3νλ‘ μ€μ
)
# ββββββββββββββββββββββββββββββββ Blog Creation System Prompt βββββββββββββ
def get_system_prompt(template="ginigen", tone="professional", word_count=1750, include_search_results=False, include_uploaded_files=False) -> str:
"""
Generate a system prompt that includes:
- The 8-step blog writing framework
- The selected template and tone
- Guidelines for using web search results and uploaded files
"""
# Ginigen recommended style prompt (English version)
ginigen_prompt = """
You are an expert English SEO copywriter.
β Purpose
- Create a blog post based on the given YouTube video script that captivates both search engines and readers.
- Always follow the 4 writing principles: **[Lead with the main point β Keep it simple and short β Emphasize reader benefits β Call to action]**.
β Complete Format (Use markdown, avoid unnecessary explanations)
1. **Title**
- Emoji + Curiosity question/exclamation + Core keywords (Within 70 characters)
- Example: `# 𧬠Can Reducing Inflammation Help You Lose Weight?! 5 Amazing Benefits of Quercetin`
2. **Hook (2-3 lines)**
- Present problem β Mention solution keyword β Summarize the benefit of reading this post
3. `---` Divider
4. **Section 1: Core Concept Introduction**
- `## π What is [Keyword]?`
- 1-2 paragraphs definition + π One-line summary
5. `---`
6. **Section 2: 5 Benefits/Reasons**
- `## πͺ 5 Reasons Why [Keyword] Is Beneficial`
- Each subsection format:
### 1. [Keyword-focused subheading]
1-2 paragraphs explanation
> β One-line key point emphasis
- Total of 5 items
7. **Section 3: Consumption/Usage Methods**
- `## π₯ How to Use [Keyword] Effectively!`
- Emoji bullet list of around 5 items + Additional tips
8. `---`
9. **Concluding Call to Action**
- `## π Conclusion β Start Using [Keyword] Today!`
- 2-3 sentences on benefits/changes β **Action directive** (purchase, subscribe, share, etc.)
10. `---`
11. **Key Summary Table**
| Item | Effect |
|---|---|
| [Keyword] | [Effect summary] |
| Key foods/products | [List] |
12. `---`
13. **Quiz & CTA**
- Simple Q&A quiz (1 question) β Reveal answer
- "If you found this helpful, please share/comment" phrase
- Preview of next post
β Additional Guidelines
- Total length 1,200-1,800 words.
- Use simple vocabulary and short sentences, enhance readability with emojis, bold text, and quoted sections.
- Increase credibility with specific numbers, research results, and analogies.
- No meta-mentions of "prompts" or "instructions".
- Use conversational but professional tone throughout.
- Minimize expressions like "according to research" if no external sources are provided.
β Output
- Return **only the completed blog post** in the above format. No additional text.
"""
# Standard 8-step framework (English version)
base_prompt = """
You are an expert in writing professional blog posts. For every blog writing request, strictly follow this 8-step framework to produce a coherent, engaging post:
Reader Connection Phase
1.1. Friendly greeting to build rapport
1.2. Reflect actual reader concerns through introductory questions
1.3. Stimulate immediate interest in the topic
Problem Definition Phase
2.1. Define the reader's pain points in detail
2.2. Analyze the urgency and impact of the problem
2.3. Build a consensus on why it needs to be solved
Establish Expertise Phase
3.1. Analyze based on objective data
3.2. Cite expert views and research findings
3.3. Use real-life examples to further clarify the issue
Solution Phase
4.1. Provide step-by-step guidance
4.2. Suggest practical tips that can be applied immediately
4.3. Mention potential obstacles and how to overcome them
Build Trust Phase
5.1. Present actual success stories
5.2. Quote real user feedback
5.3. Use objective data to prove effectiveness
Action Phase
6.1. Suggest the first clear step the reader can take
6.2. Urge timely action by emphasizing urgency
6.3. Motivate by highlighting incentives or benefits
Authenticity Phase
7.1. Transparently disclose any limits of the solution
7.2. Admit that individual experiences may vary
7.3. Mention prerequisites or cautionary points
Relationship Continuation Phase
8.1. Conclude with sincere gratitude
8.2. Preview upcoming content to build anticipation
8.3. Provide channels for further communication
"""
# Additional guidelines for each template
template_guides = {
"tutorial": """
This blog should be in a tutorial style:
- Clearly state the goal and the final outcome first
- Provide step-by-step explanations with clear separations
- Indicate where images could be inserted for each step
- Mention approximate time requirements and difficulty level
- List necessary tools or prerequisite knowledge
- Give troubleshooting tips and common mistakes to avoid
- Conclude with suggestions for next steps or advanced applications
""",
"review": """
This blog should be in a review style:
- Separate objective facts from subjective opinions
- Clearly list your evaluation criteria
- Discuss both pros and cons in a balanced way
- Compare with similar products/services
- Specify the target audience for whom it is suitable
- Provide concrete use cases and outcomes
- Conclude with a final recommendation or alternatives
""",
"storytelling": """
This blog should be in a storytelling style:
- Start with a real or hypothetical person or case
- Emphasize emotional connection with the problem scenario
- Follow a narrative structure centered on conflict and resolution
- Include meaningful insights or lessons learned
- Maintain an emotional thread the reader can relate to
- Balance storytelling with useful information
- Encourage the reader to reflect on their own story
""",
"seo_optimized": """
This blog should be SEO-optimized:
- Include the main keyword in the title, headings, and first paragraph
- Spread related keywords naturally throughout the text
- Keep paragraphs around 300-500 characters
- Use question-based subheadings
- Make use of lists, tables, and bold text to diversify formatting
- Indicate where internal links could be inserted
- Provide sufficient content of at least 2000-3000 characters
"""
}
# Additional guidelines for each tone
tone_guides = {
"professional": "Use a professional, authoritative voice. Clearly explain any technical terms and present data or research to maintain a logical flow.",
"casual": "Use a relaxed, conversational style. Employ personal experiences, relatable examples, and a friendly voice (e.g., 'It's super useful!').",
"humorous": "Use humor and witty expressions. Add funny analogies or jokes while preserving accuracy and usefulness.",
"storytelling": "Write as if telling a story, with emotional depth and narrative flow. Incorporate characters, settings, conflicts, and resolutions."
}
# Guidelines for using search results
search_guide = """
Guidelines for Using Search Results:
- Accurately incorporate key information from the search results into the blog
- Include recent data, statistics, and case studies from the search results
- When quoting, specify the source within the text (e.g., "According to XYZ website...")
- At the end of the blog, add a "References" section and list major sources with links
- If there are conflicting pieces of information, present multiple perspectives
- Make sure to reflect the latest trends and data from the search results
"""
# Guidelines for using uploaded files
upload_guide = """
Guidelines for Using Uploaded Files (Highest Priority):
- The uploaded files must be a main source of information for the blog
- Carefully examine the data, statistics, or examples in the file and integrate them
- Directly quote and thoroughly explain any key figures or claims from the file
- Highlight the file content as a crucial aspect of the blog
- Mention the source clearly, e.g., "According to the uploaded data..."
- For CSV files, detail important stats or numerical data in the blog
- For PDF files, quote crucial segments or statements
- For text files, integrate relevant content effectively
- Even if the file content seems tangential, do your best to connect it to the blog topic
- Keep consistency throughout and ensure the file's data is appropriately reflected
"""
# Choose base prompt
if template == "ginigen":
final_prompt = ginigen_prompt
else:
final_prompt = base_prompt
# If the user chose a specific template (and not ginigen), append the relevant guidelines
if template != "ginigen" and template in template_guides:
final_prompt += "\n" + template_guides[template]
# If a specific tone is selected, append that guideline
if tone in tone_guides:
final_prompt += f"\n\nTone and Manner: {tone_guides[tone]}"
# If web search results should be included
if include_search_results:
final_prompt += f"\n\n{search_guide}"
# If uploaded files should be included
if include_uploaded_files:
final_prompt += f"\n\n{upload_guide}"
# Word count guidelines
final_prompt += (
f"\n\nWriting Requirements:\n"
f"9.1. Word Count: around {word_count-250}-{word_count+250} characters\n"
f"9.2. Paragraph Length: 3-4 sentences each\n"
f"9.3. Visual Cues: Use subheadings, separators, and bullet/numbered lists\n"
f"9.4. Data: Cite all sources\n"
f"9.5. Readability: Use clear paragraph breaks and highlights where necessary"
)
return final_prompt
# ββββββββββββββββββββββββββββββββ Brave Search API ββββββββββββββββββββββββ
@st.cache_data(ttl=3600)
def brave_search(query: str, count: int = 20):
"""
Call the Brave Web Search API β list[dict]
Returns fields: index, title, link, snippet, displayed_link
"""
if not BRAVE_KEY:
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": BRAVE_KEY
}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
logging.info(f"Brave search result data structure: {list(data.keys())}")
raw = data.get("web", {}).get("results") or data.get("results", [])
if not raw:
logging.warning(f"No Brave search results found. Response: {data}")
raise ValueError("No search results found.")
arts = []
for i, res in enumerate(raw[:count], 1):
url = res.get("url", res.get("link", ""))
host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
arts.append({
"index": i,
"title": res.get("title", "No title"),
"link": url,
"snippet": res.get("description", res.get("text", "No snippet")),
"displayed_link": host
})
logging.info(f"Brave search success: {len(arts)} results")
return arts
except Exception as e:
logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(2)
return []
def mock_results(query: str) -> str:
"""Fallback search results if API fails"""
ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return (f"# Fallback Search Content (Generated: {ts})\n\n"
f"The search API request failed. Please generate the blog based on any pre-existing knowledge about '{query}'.\n\n"
f"You may consider the following points:\n\n"
f"- Basic concepts and importance of {query}\n"
f"- Commonly known related statistics or trends\n"
f"- Typical expert opinions on this subject\n"
f"- Questions that readers might have\n\n"
f"Note: This is fallback guidance, not real-time data.\n\n")
def do_web_search(query: str) -> str:
"""Perform web search and format the results."""
try:
arts = brave_search(query, 20)
if not arts:
logging.warning("No search results, using fallback content")
return mock_results(query)
hdr = "# Web Search Results\nUse the information below to enhance the reliability of your blog. When you quote, please cite the source, and add a References section at the end of the blog.\n\n"
body = "\n".join(
f"### Result {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
f"**Source**: [{a['displayed_link']}]({a['link']})\n\n---\n"
for a in arts
)
return hdr + body
except Exception as e:
logging.error(f"Web search process failed: {str(e)}")
return mock_results(query)
# ββββββββββββββββββββββββββββββββ File Upload Handling βββββββββββββββββββββ
def process_text_file(file):
"""Handle text file"""
try:
content = file.read()
file.seek(0)
text = content.decode('utf-8', errors='ignore')
if len(text) > 10000:
text = text[:9700] + "...(truncated)..."
result = f"## Text File: {file.name}\n\n"
result += text
return result
except Exception as e:
logging.error(f"Error processing text file: {str(e)}")
return f"Error processing text file: {str(e)}"
def process_csv_file(file):
"""Handle CSV file"""
try:
content = file.read()
file.seek(0)
df = pd.read_csv(io.BytesIO(content))
result = f"## CSV File: {file.name}\n\n"
result += f"- Rows: {len(df)}\n"
result += f"- Columns: {len(df.columns)}\n"
result += f"- Column Names: {', '.join(df.columns.tolist())}\n\n"
result += "### Data Preview\n\n"
preview_df = df.head(10)
try:
markdown_table = preview_df.to_markdown(index=False)
if markdown_table:
result += markdown_table + "\n\n"
else:
result += "Unable to display CSV data.\n\n"
except Exception as e:
logging.error(f"Markdown table conversion error: {e}")
result += "Displaying data as text:\n\n"
result += str(preview_df) + "\n\n"
num_cols = df.select_dtypes(include=['number']).columns
if len(num_cols) > 0:
result += "### Basic Statistical Information\n\n"
try:
stats_df = df[num_cols].describe().round(2)
stats_markdown = stats_df.to_markdown()
if stats_markdown:
result += stats_markdown + "\n\n"
else:
result += "Unable to display statistical information.\n\n"
except Exception as e:
logging.error(f"Statistical info conversion error: {e}")
result += "Unable to generate statistical information.\n\n"
return result
except Exception as e:
logging.error(f"CSV file processing error: {str(e)}")
return f"Error processing CSV file: {str(e)}"
def process_pdf_file(file):
"""Handle PDF file"""
try:
# Read file in bytes
file_bytes = file.read()
file.seek(0)
# Use PyPDF2
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
# Basic info
result = f"## PDF File: {file.name}\n\n"
result += f"- Total pages: {len(reader.pages)}\n\n"
# Extract text by page (limit to first 5 pages)
max_pages = min(5, len(reader.pages))
all_text = ""
for i in range(max_pages):
try:
page = reader.pages[i]
page_text = page.extract_text()
current_page_text = f"### Page {i+1}\n\n"
if page_text and len(page_text.strip()) > 0:
# Limit to 1500 characters per page
if len(page_text) > 1500:
current_page_text += page_text[:1500] + "...(truncated)...\n\n"
else:
current_page_text += page_text + "\n\n"
else:
current_page_text += "(No text could be extracted from this page)\n\n"
all_text += current_page_text
# If total text is too long, break
if len(all_text) > 8000:
all_text += "...(truncating remaining pages; PDF is too large)...\n\n"
break
except Exception as page_err:
logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
all_text += f"### Page {i+1}\n\n(Error extracting content: {str(page_err)})\n\n"
if len(reader.pages) > max_pages:
all_text += f"\nNote: Only the first {max_pages} pages are shown out of {len(reader.pages)} total.\n\n"
result += "### PDF Content\n\n" + all_text
return result
except Exception as e:
logging.error(f"PDF file processing error: {str(e)}")
return f"## PDF File: {file.name}\n\nError occurred: {str(e)}\n\nThis PDF file cannot be processed."
def process_uploaded_files(files):
"""Combine the contents of all uploaded files into one string."""
if not files:
return None
result = "# Uploaded File Contents\n\n"
result += "Below is the content from the files provided by the user. Integrate this data as a main source of information for the blog.\n\n"
for file in files:
try:
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
result += process_text_file(file) + "\n\n---\n\n"
elif ext == 'csv':
result += process_csv_file(file) + "\n\n---\n\n"
elif ext == 'pdf':
result += process_pdf_file(file) + "\n\n---\n\n"
else:
result += f"### Unsupported File: {file.name}\n\n---\n\n"
except Exception as e:
logging.error(f"File processing error {file.name}: {e}")
result += f"### File processing error: {file.name}\n\nError: {e}\n\n---\n\n"
return result
# ββββββββββββββββββββββββββββββββ Image & Utility βββββββββββββββββββββββββ
def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
"""Image generation function."""
if not prompt:
return None, "Insufficient prompt"
try:
res = Client(IMAGE_API_URL).predict(
prompt=prompt, width=w, height=h, guidance=g,
inference_steps=steps, seed=seed,
do_img2img=False, init_image=None,
image2image_strength=0.8, resize_img=True,
api_name="/generate_image"
)
return res[0], f"Seed: {res[1]}"
except Exception as e:
logging.error(e)
return None, str(e)
def extract_image_prompt(blog_text: str, topic: str):
"""
Generate a single-line English image prompt from the blog content.
"""
client = get_openai_client()
try:
response = client.chat.completions.create(
model="gpt-4.1-mini", # μΌλ°μ μΌλ‘ μ¬μ© κ°λ₯ν λͺ¨λΈλ‘ μ€μ
messages=[
{"role": "system", "content": "Generate a single-line English image prompt from the following text. Return only the prompt text, nothing else."},
{"role": "user", "content": f"Topic: {topic}\n\n---\n{blog_text}\n\n---"}
],
temperature=1,
max_tokens=80,
top_p=1
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"OpenAI image prompt generation error: {e}")
return f"A professional photo related to {topic}, high quality"
def md_to_html(md: str, title="Ginigen Blog"):
"""Convert Markdown to HTML."""
return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"
def keywords(text: str, top=5):
"""Simple keyword extraction."""
cleaned = re.sub(r"[^κ°-ν£a-zA-Z0-9\s]", "", text)
return " ".join(cleaned.split()[:top])
# ββββββββββββββββββββββββββββββββ Streamlit UI ββββββββββββββββββββββββββββ
def ginigen_app():
st.title("Ginigen Blog")
# Set default session state
if "ai_model" not in st.session_state:
st.session_state.ai_model = "gpt-4.1-mini" # κ³ μ λͺ¨λΈ μ€μ
if "messages" not in st.session_state:
st.session_state.messages = []
if "auto_save" not in st.session_state:
st.session_state.auto_save = True
if "generate_image" not in st.session_state:
st.session_state.generate_image = False
if "web_search_enabled" not in st.session_state:
st.session_state.web_search_enabled = True
if "blog_template" not in st.session_state:
st.session_state.blog_template = "ginigen" # Ginigen recommended style by default
if "blog_tone" not in st.session_state:
st.session_state.blog_tone = "professional"
if "word_count" not in st.session_state:
st.session_state.word_count = 1750
# Sidebar UI
sb = st.sidebar
sb.title("Blog Settings")
# λͺ¨λΈ μ ν μ κ±° (κ³ μ λͺ¨λΈ μ¬μ©)
sb.subheader("Blog Style Settings")
sb.selectbox(
"Blog Template",
options=list(BLOG_TEMPLATES.keys()),
format_func=lambda x: BLOG_TEMPLATES[x],
key="blog_template"
)
sb.selectbox(
"Blog Tone",
options=list(BLOG_TONES.keys()),
format_func=lambda x: BLOG_TONES[x],
key="blog_tone"
)
sb.slider("Blog Length (word count)", 800, 3000, key="word_count")
# Example topics
sb.subheader("Example Topics")
c1, c2, c3 = sb.columns(3)
if c1.button("Real Estate Tax", key="ex1"):
process_example(EXAMPLE_TOPICS["example1"])
if c2.button("Summer Festivals", key="ex2"):
process_example(EXAMPLE_TOPICS["example2"])
if c3.button("Investment Guide", key="ex3"):
process_example(EXAMPLE_TOPICS["example3"])
sb.subheader("Other Settings")
sb.toggle("Auto Save", key="auto_save")
sb.toggle("Auto Image Generation", key="generate_image")
web_search_enabled = sb.toggle("Use Web Search", value=st.session_state.web_search_enabled)
st.session_state.web_search_enabled = web_search_enabled
if web_search_enabled:
st.sidebar.info("β
Web search results will be integrated into the blog.")
# Download the latest blog (markdown/HTML)
latest_blog = next(
(m["content"] for m in reversed(st.session_state.messages)
if m["role"] == "assistant" and m["content"].strip()),
None
)
if latest_blog:
title_match = re.search(r"# (.*?)(\n|$)", latest_blog)
title = title_match.group(1).strip() if title_match else "blog"
sb.subheader("Download Latest Blog")
d1, d2 = sb.columns(2)
d1.download_button("Download as Markdown", latest_blog,
file_name=f"{title}.md", mime="text/markdown")
d2.download_button("Download as HTML", md_to_html(latest_blog, title),
file_name=f"{title}.html", mime="text/html")
# JSON conversation record upload
up = sb.file_uploader("Load Conversation History (.json)", type=["json"], key="json_uploader")
if up:
try:
st.session_state.messages = json.load(up)
sb.success("Conversation history loaded successfully")
except Exception as e:
sb.error(f"Failed to load: {e}")
# JSON conversation record download
if sb.button("Download Conversation as JSON"):
sb.download_button(
"Save",
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
file_name="chat_history.json",
mime="application/json"
)
# File Upload
st.subheader("File Upload")
uploaded_files = st.file_uploader(
"Upload files to be referenced in your blog (txt, csv, pdf)",
type=["txt", "csv", "pdf"],
accept_multiple_files=True,
key="file_uploader"
)
if uploaded_files:
file_count = len(uploaded_files)
st.success(f"{file_count} files uploaded. They will be referenced in the blog.")
with st.expander("Preview Uploaded Files", expanded=False):
for idx, file in enumerate(uploaded_files):
st.write(f"**File Name:** {file.name}")
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
preview = file.read(1000).decode('utf-8', errors='ignore')
file.seek(0)
st.text_area(
f"Preview of {file.name}",
preview + ("..." if len(preview) >= 1000 else ""),
height=150
)
elif ext == 'csv':
try:
df = pd.read_csv(file)
file.seek(0)
st.write("CSV Preview (up to 5 rows)")
st.dataframe(df.head(5))
except Exception as e:
st.error(f"CSV preview failed: {e}")
elif ext == 'pdf':
try:
file_bytes = file.read()
file.seek(0)
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
pc = len(reader.pages)
st.write(f"PDF File: {pc} pages")
if pc > 0:
try:
page_text = reader.pages[0].extract_text()
preview = page_text[:500] if page_text else "(No text extracted)"
st.text_area("Preview of the first page", preview + "...", height=150)
except:
st.warning("Failed to extract text from the first page")
except Exception as e:
st.error(f"PDF preview failed: {e}")
if idx < file_count - 1:
st.divider()
# Display existing messages
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
if "image" in m:
st.image(m["image"], caption=m.get("image_caption", ""))
# User input
prompt = st.chat_input("Enter a blog topic or keywords.")
if prompt:
process_input(prompt, uploaded_files)
def process_example(topic):
"""Process the selected example topic."""
process_input(topic, [])
def process_input(prompt: str, uploaded_files):
# Add user's message
if not any(m["role"] == "user" and m["content"] == prompt for m in st.session_state.messages):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
use_web_search = st.session_state.web_search_enabled
has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
try:
# μν νμλ₯Ό μν μν μ»΄ν¬λνΈ
status = st.status("Preparing to generate blog...")
status.update(label="Initializing client...")
client = get_openai_client()
# Prepare conversation messages
messages = []
# Web search
search_content = None
if use_web_search:
status.update(label="Performing web search...")
with st.spinner("Searching the web..."):
search_content = do_web_search(keywords(prompt, top=5))
# Process uploaded files β content
file_content = None
if has_uploaded_files:
status.update(label="Processing uploaded files...")
with st.spinner("Analyzing files..."):
file_content = process_uploaded_files(uploaded_files)
# Build system prompt
status.update(label="Preparing blog draft...")
sys_prompt = get_system_prompt(
template=st.session_state.blog_template,
tone=st.session_state.blog_tone,
word_count=st.session_state.word_count,
include_search_results=use_web_search,
include_uploaded_files=has_uploaded_files
)
# OpenAI API νΈμΆ μ€λΉ
status.update(label="Writing blog content...")
# λ©μμ§ κ΅¬μ±
api_messages = [
{"role": "system", "content": sys_prompt}
]
user_content = prompt
# κ²μ κ²°κ³Όκ° μμΌλ©΄ μ¬μ©μ ν둬ννΈμ μΆκ°
if search_content:
user_content += "\n\n" + search_content
# νμΌ λ΄μ©μ΄ μμΌλ©΄ μ¬μ©μ ν둬ννΈμ μΆκ°
if file_content:
user_content += "\n\n" + file_content
# μ¬μ©μ λ©μμ§ μΆκ°
api_messages.append({"role": "user", "content": user_content})
# OpenAI API μ€νΈλ¦¬λ° νΈμΆ - κ³ μ λͺ¨λΈ "gpt-4.1-mini" μ¬μ©
try:
# μ€νΈλ¦¬λ° λ°©μμΌλ‘ API νΈμΆ
stream = client.chat.completions.create(
model="gpt-4.1-mini", # κ³ μ λͺ¨λΈ μ¬μ©
messages=api_messages,
temperature=1,
max_tokens=MAX_TOKENS,
top_p=1,
stream=True # μ€νΈλ¦¬λ° νμ±ν
)
# μ€νΈλ¦¬λ° μλ΅ μ²λ¦¬
for chunk in stream:
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
content_delta = chunk.choices[0].delta.content
full_response += content_delta
message_placeholder.markdown(full_response + "β")
# μ΅μ’
μλ΅ νμ (컀μ μ κ±°)
message_placeholder.markdown(full_response)
status.update(label="Blog completed!", state="complete")
except Exception as api_error:
error_message = str(api_error)
logging.error(f"API error: {error_message}")
status.update(label=f"Error: {error_message}", state="error")
raise Exception(f"Blog generation error: {error_message}")
# μ΄λ―Έμ§ μμ±
answer_entry_saved = False
if st.session_state.generate_image and full_response:
with st.spinner("Generating image..."):
try:
ip = extract_image_prompt(full_response, prompt)
img, cap = generate_image(ip)
if img:
st.image(img, caption=cap)
st.session_state.messages.append({
"role": "assistant",
"content": full_response,
"image": img,
"image_caption": cap
})
answer_entry_saved = True
except Exception as img_error:
logging.error(f"Image generation error: {str(img_error)}")
st.warning("μ΄λ―Έμ§ μμ±μ μ€ν¨νμ΅λλ€. λΈλ‘κ·Έ μ½ν
μΈ λ§ μ μ₯λ©λλ€.")
# Save the answer if not saved above
if not answer_entry_saved and full_response:
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Download buttons
if full_response:
st.subheader("Download This Blog")
c1, c2 = st.columns(2)
c1.download_button(
"Markdown",
data=full_response,
file_name=f"{prompt[:30]}.md",
mime="text/markdown"
)
c2.download_button(
"HTML",
data=md_to_html(full_response, prompt[:30]),
file_name=f"{prompt[:30]}.html",
mime="text/html"
)
# Auto save
if st.session_state.auto_save and st.session_state.messages:
try:
fn = f"chat_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
with open(fn, "w", encoding="utf-8") as fp:
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
except Exception as e:
logging.error(f"Auto-save failed: {e}")
except Exception as e:
error_message = str(e)
placeholder.error(f"An error occurred: {error_message}")
logging.error(f"Process input error: {error_message}")
ans = f"An error occurred while processing your request: {error_message}"
st.session_state.messages.append({"role": "assistant", "content": ans})
# ββββββββββββββββββββββββββββββββ main ββββββββββββββββββββββββββββββββββββ
def main():
ginigen_app()
if __name__ == "__main__":
main() |