import cv2 from scipy.ndimage import zoom as scizoom from numba import njit, prange import numpy as np import math def gen_lensmask(h, w, gamma): """ Generate lens mask with shape (h, w). For point (i, j), distance = [(i - h // 2)^2 + (j - w // 2)^2] ^ (1/2) / [h // 2)^2 + (w // 2)^2] ^ (1/2) mask = scale * (1 - distance) ^ gamma @param h: height @param w: width @param gamma: exponential factor @return: Mask, H x W """ dist1 = np.array([list(range(w))] * h) - w // 2 dist2 = np.array([list(range(h))] * w) - h // 2 dist2 = np.transpose(dist2, (1, 0)) dist = np.sqrt((dist1 ** 2 + dist2 ** 2)) / np.sqrt((w ** 2 + h ** 2) / 4) mask = (1 - dist) ** gamma return mask def gen_disk(radius, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) else: L = np.arange(-radius, radius + 1) X, Y = np.meshgrid(L, L) disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) disk /= np.sum(disk) return disk # modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py def plasma_fractal(mapsize=256, wibbledecay=3): """ Generate a heightmap using diamond-square algorithm. Return square 2d array, side length 'mapsize', of floats in range 0-255. 'mapsize' must be a power of two. """ assert (mapsize & (mapsize - 1) == 0) maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 def wibbledmean(array): return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square of points stepsize apart, calculate middle value as mean of points + wibble""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond of points stepsize apart, calculate middle value as mean of points + wibble""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max() def clipped_zoom(img, zoom_factor): # clipping along the width dimension: ch0 = int(np.ceil(img.shape[0] / float(zoom_factor))) top0 = (img.shape[0] - ch0) // 2 # clipping along the height dimension: ch1 = int(np.ceil(img.shape[1] / float(zoom_factor))) top1 = (img.shape[1] - ch1) // 2 img = scizoom(img[top0:top0 + ch0, top1:top1 + ch1], (zoom_factor, zoom_factor, 1), order=1) return img def getOptimalKernelWidth1D(radius, sigma): return radius * 2 + 1 def gauss_function(x, mean, sigma): return (np.exp(- (x - mean)**2 / (2 * (sigma**2)))) / (np.sqrt(2 * np.pi) * sigma) def getMotionBlurKernel(width, sigma): k = gauss_function(np.arange(width), 0, sigma) Z = np.sum(k) return k/Z def shift(image, dx, dy): if(dx < 0): shifted = np.roll(image, shift=image.shape[1]+dx, axis=1) shifted[:,dx:] = shifted[:,dx-1:dx] elif(dx > 0): shifted = np.roll(image, shift=dx, axis=1) shifted[:,:dx] = shifted[:,dx:dx+1] else: shifted = image if(dy < 0): shifted = np.roll(shifted, shift=image.shape[0]+dy, axis=0) shifted[dy:,:] = shifted[dy-1:dy,:] elif(dy > 0): shifted = np.roll(shifted, shift=dy, axis=0) shifted[:dy,:] = shifted[dy:dy+1,:] return shifted def _motion_blur(x, radius, sigma, angle): width = getOptimalKernelWidth1D(radius, sigma) kernel = getMotionBlurKernel(width, sigma) point = (width * np.sin(np.deg2rad(angle)), width * np.cos(np.deg2rad(angle))) hypot = math.hypot(point[0], point[1]) blurred = np.zeros_like(x, dtype=np.float32) for i in range(width): dy = -math.ceil(((i*point[0]) / hypot) - 0.5) dx = -math.ceil(((i*point[1]) / hypot) - 0.5) if (np.abs(dy) >= x.shape[0] or np.abs(dx) >= x.shape[1]): # simulated motion exceeded image borders break shifted = shift(x, dx, dy) blurred = blurred + kernel[i] * shifted return blurred # Numba nopython compilation to shuffle_pixles @njit() def shuffle_pixels_njit(img, shift, iteration): height, width = img.shape[:2] # locally shuffle pixels for _ in range(iteration): for h in range(height - shift, shift, -1): for w in range(width - shift, shift, -1): dx, dy = np.random.randint(-shift, shift, size=(2,)) h_prime, w_prime = h + dy, w + dx # swap img[h, w], img[h_prime, w_prime] = img[h_prime, w_prime], img[h, w] return img