import random from PIL import Image import PIL.Image import numpy as np def center_crop_arr(pil_image, image_size): """ Center cropping implementation from ADM. https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126 """ while min(*pil_image.size) >= 2 * image_size: pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX) scale = image_size / min(*pil_image.size) pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC) arr = np.array(pil_image) crop_y = (arr.shape[0] - image_size) // 2 crop_x = (arr.shape[1] - image_size) // 2 return Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]) def center_crop(pil_image, crop_size): while pil_image.size[0] >= 2 * crop_size[0] and pil_image.size[1] >= 2 * crop_size[1]: pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX) scale = max(crop_size[0] / pil_image.size[0], crop_size[1] / pil_image.size[1]) pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC) crop_left = random.randint(0, pil_image.size[0] - crop_size[0]) crop_upper = random.randint(0, pil_image.size[1] - crop_size[1]) crop_right = crop_left + crop_size[0] crop_lower = crop_upper + crop_size[1] return pil_image.crop(box=(crop_left, crop_upper, crop_right, crop_lower)) def pad(pil_image, pad_size): while pil_image.size[0] >= 2 * pad_size[0] and pil_image.size[1] >= 2 * pad_size[1]: pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX) scale = min(pad_size[0] / pil_image.size[0], pad_size[1] / pil_image.size[1]) pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC) new_image = Image.new('RGB', pad_size, (255, 255, 255)) new_image.paste(pil_image, (0, 0)) return new_image def var_center_crop(pil_image, crop_size_list, random_top_k=4): w, h = pil_image.size rem_percent = [min(cw / w, ch / h) / max(cw / w, ch / h) for cw, ch in crop_size_list] crop_size = random.choice( sorted(((x, y) for x, y in zip(rem_percent, crop_size_list)), reverse=True)[:random_top_k] )[1] return center_crop(pil_image, crop_size) def var_pad(pil_image, pad_size_list, random_top_k=4): w, h = pil_image.size rem_percent = [min(cw / w, ch / h) / max(cw / w, ch / h) for cw, ch in pad_size_list] crop_size = random.choice( sorted(((x, y) for x, y in zip(rem_percent, pad_size_list)), reverse=True)[:random_top_k] )[1] return pad(pil_image, crop_size) def match_size(w, h, crop_size_list, random_top_k=4): rem_percent = [min(cw / w, ch / h) / max(cw / w, ch / h) for cw, ch in crop_size_list] crop_size = random.choice( sorted(((x, y) for x, y in zip(rem_percent, crop_size_list)), reverse=True)[:random_top_k] )[1] return crop_size def generate_crop_size_list(num_patches, patch_size, max_ratio=4.0, step_size=1): assert max_ratio >= 1.0 crop_size_list = [] wp, hp = num_patches, step_size while wp > 0: if max(wp, hp) / min(wp, hp) <= max_ratio: crop_size_list.append((wp * patch_size, hp * patch_size)) if (hp + step_size) * wp <= num_patches: hp += step_size else: wp -= step_size return crop_size_list def to_rgb_if_rgba(img: Image.Image): if img.mode.upper() == "RGBA": rgb_img = Image.new("RGB", img.size, (255, 255, 255)) rgb_img.paste(img, mask=img.split()[3]) # 3 is the alpha channel return rgb_img else: return img