import subprocess subprocess.run('pip install flash-attn --no-build-isolation', shell=True) import argparse import spaces from visualcloze import VisualClozeModel import gradio as gr import demo_tasks from functools import partial from data.prefix_instruction import get_layout_instruction from huggingface_hub import snapshot_download max_grid_h = 5 max_grid_w = 5 default_grid_h = 2 default_grid_w = 3 default_upsampling_noise = 0.4 default_steps = 30 GUIDANCE = """ ## 📋 Quick Start Guide: 1. Adjust **Number of In-context Examples**, 0 disables in-context learning. 2. Set **Task Columns**, the number of images involved in a task. 3. Upload Images. For in-context examples, upload all images. For the current query, upload images exclude the target. 4. Click **Generate** to create the images. 5. Parameters can be fine-tuned under **Advanced Options**.
Click the task button in the right bottom to acquire examples of various tasks.
### 📧 Need help or have questions? Contact us at: lizhongyu [AT] mail.nankai.edu.cn """ CITATION = r""" If you find VisualCloze is helpful, please consider to star ⭐ the Github Repo. Thanks! --- 📝 **Citation**
If our work is useful for your research, please consider citing: ```bibtex @article{li2025visualcloze, title={VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning}, author={Li, Zhong-Yu and Du, ruoyi and Yan, Juncheng and Zhuo, Le and Li, Zhen and Gao, Peng and Ma, Zhanyu and Cheng, Ming-Ming}, booktitle={arXiv preprint arxiv:}, year={2025} } ``` 📋 **License**
This project is licensed under xxx. """ def create_demo(model): with gr.Blocks(title="VisualCloze Demo") as demo: gr.Markdown("# VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning") gr.HTML("""
""") gr.Markdown(GUIDANCE) # Pre-create all possible image components all_image_inputs = [] rows = [] row_texts = [] with gr.Row(): with gr.Column(scale=2): # Image grid for i in range(max_grid_h): # Add row label before each row row_texts.append(gr.Markdown( "
" + ("query" if i == default_grid_h - 1 else f"In-context Example {i + 1}") + "
", elem_id=f"row_text_{i}", visible=i < default_grid_h )) with gr.Row(visible=i < default_grid_h, elem_id=f"row_{i}") as row: rows.append(row) for j in range(max_grid_w): img_input = gr.Image( label=f"In-context Example {i + 1}/{j + 1}" if i != default_grid_h - 1 else f"Query {j + 1}", type="pil", visible= i < default_grid_h and j < default_grid_w, interactive=True, elem_id=f"img_{i}_{j}" ) all_image_inputs.append(img_input) # Prompts layout_prompt = gr.Textbox( label="Layout Description (Auto-filled, Read-only)", placeholder="Layout description will be automatically filled based on grid size...", value=get_layout_instruction(default_grid_w, default_grid_h), elem_id="layout_prompt", interactive=False ) task_prompt = gr.Textbox( label="Task Description (Can be modified by referring to examples to perform custom tasks, but may lead to unstable results)", placeholder="Describe what task should be performed...", value="", elem_id="task_prompt" ) content_prompt = gr.Textbox( label="Content Description (Image caption, Editing instructions, etc.)", placeholder="Describe the content requirements...", value="", elem_id="content_prompt" ) generate_btn = gr.Button("Generate", elem_id="generate_btn") grid_h = gr.Slider(minimum=0, maximum=max_grid_h-1, value=default_grid_h-1, step=1, label="Number of In-context Examples", elem_id="grid_h") grid_w = gr.Slider(minimum=1, maximum=max_grid_w, value=default_grid_w, step=1, label="Task Columns", elem_id="grid_w") with gr.Accordion("Advanced options", open=False): seed = gr.Number(label="Seed (0 for random)", value=0, precision=0) steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=default_steps, step=1) cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=50.0, value=30, step=1) upsampling_steps = gr.Slider(label="Upsampling steps (SDEdit)", minimum=1, maximum=100.0, value=10, step=1) upsampling_noise = gr.Slider(label="Upsampling noise (SDEdit)", minimum=0, maximum=1.0, value=default_upsampling_noise, step=0.01) gr.Markdown(CITATION) # Output with gr.Column(scale=2): output_gallery = gr.Gallery( label="Generated Results", show_label=True, elem_id="output_gallery", columns=None, rows=None, height="auto", allow_preview=True, object_fit="contain" ) gr.Markdown("# Task Examples") text_dense_prediction_tasks = gr.Textbox(label="Task", visible=False) dense_prediction_tasks = gr.Dataset( samples=demo_tasks.dense_prediction_text, label='Dense Prediction', samples_per_page=1000, components=[text_dense_prediction_tasks]) text_conditional_generation_tasks = gr.Textbox(label="Task", visible=False) conditional_generation_tasks = gr.Dataset( samples=demo_tasks.conditional_generation_text, label='Conditional Generation', samples_per_page=1000, components=[text_conditional_generation_tasks]) text_image_restoration_tasks = gr.Textbox(label="Task", visible=False) image_restoration_tasks = gr.Dataset( samples=demo_tasks.image_restoration_text, label='Image Restoration', samples_per_page=1000, components=[text_image_restoration_tasks]) text_style_transfer_tasks = gr.Textbox(label="Task", visible=False) style_transfer_tasks = gr.Dataset( samples=demo_tasks.style_transfer_text, label='Style Transfer', samples_per_page=1000, components=[text_style_transfer_tasks]) text_style_condition_fusion_tasks = gr.Textbox(label="Task", visible=False) style_condition_fusion_tasks = gr.Dataset( samples=demo_tasks.style_condition_fusion_text, label='Style Condition Fusion', samples_per_page=1000, components=[text_style_condition_fusion_tasks]) text_tryon_tasks = gr.Textbox(label="Task", visible=False) tryon_tasks = gr.Dataset( samples=demo_tasks.tryon_text, label='Virtual Try-On', samples_per_page=1000, components=[text_tryon_tasks]) text_relighting_tasks = gr.Textbox(label="Task", visible=False) relighting_tasks = gr.Dataset( samples=demo_tasks.relighting_text, label='Relighting', samples_per_page=1000, components=[text_relighting_tasks]) text_photodoodle_tasks = gr.Textbox(label="Task", visible=False) photodoodle_tasks = gr.Dataset( samples=demo_tasks.photodoodle_text, label='Photodoodle', samples_per_page=1000, components=[text_photodoodle_tasks]) text_editing_tasks = gr.Textbox(label="Task", visible=False) editing_tasks = gr.Dataset( samples=demo_tasks.editing_text, label='Editing', samples_per_page=1000, components=[text_editing_tasks]) text_unseen_tasks = gr.Textbox(label="Task", visible=False) unseen_tasks = gr.Dataset( samples=demo_tasks.unseen_tasks_text, label='Unseen Tasks (May produce unstable effects)', samples_per_page=1000, components=[text_unseen_tasks]) gr.Markdown("# Subject-driven Tasks Examples") text_subject_driven_tasks = gr.Textbox(label="Task", visible=False) subject_driven_tasks = gr.Dataset( samples=demo_tasks.subject_driven_text, label='Subject-driven Generation', samples_per_page=1000, components=[text_subject_driven_tasks]) text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False) condition_subject_fusion_tasks = gr.Dataset( samples=demo_tasks.condition_subject_fusion_text, label='Condition+Subject Fusion', samples_per_page=1000, components=[text_condition_subject_fusion_tasks]) text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False) style_transfer_with_subject_tasks = gr.Dataset( samples=demo_tasks.style_transfer_with_subject_text, label='Style Transfer with Subject', samples_per_page=1000, components=[text_style_transfer_with_subject_tasks]) text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False) condition_subject_style_fusion_tasks = gr.Dataset( samples=demo_tasks.condition_subject_style_fusion_text, label='Condition+Subject+Style Fusion', samples_per_page=1000, components=[text_condition_subject_style_fusion_tasks]) text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False) editing_with_subject_tasks = gr.Dataset( samples=demo_tasks.editing_with_subject_text, label='Editing with Subject', samples_per_page=1000, components=[text_editing_with_subject_tasks]) text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False) image_restoration_with_subject_tasks = gr.Dataset( samples=demo_tasks.image_restoration_with_subject_text, label='Image Restoration with Subject', samples_per_page=1000, components=[text_image_restoration_with_subject_tasks]) def update_grid(h, w): actual_h = h + 1 model.set_grid_size(actual_h, w) updates = [] # Update image component visibility for i in range(max_grid_h * max_grid_w): curr_row = i // max_grid_w curr_col = i % max_grid_w updates.append( gr.update( label=f"In-context Example {curr_row + 1}/{curr_col + 1}" if curr_row != actual_h - 1 else f"Query {curr_col + 1}", elem_id=f"img_{curr_row}_{curr_col}", visible=(curr_row < actual_h and curr_col < w))) # Update row visibility and labels updates_row = [] updates_row_text = [] for i in range(max_grid_h): updates_row.append(gr.update(f"row_{i}", visible=(i < actual_h))) updates_row_text.append( gr.update( elem_id=f"row_text_{i}", visible=i < actual_h, value="
" + ("Query" if i == actual_h - 1 else f"In-context Example {i + 1}") + "
", ) ) updates.extend(updates_row) updates.extend(updates_row_text) updates.append(gr.update(elem_id="layout_prompt", value=get_layout_instruction(w, actual_h))) return updates def generate_image(*inputs): images = [] for i in range(model.grid_h): images.append([]) for j in range(model.grid_w): images[i].append(inputs[i * max_grid_w + j]) seed, cfg, steps, upsampling_steps, upsampling_noise, layout_text, task_text, content_text = inputs[-8:] results = generate( images, [layout_text, task_text, content_text], seed=seed, cfg=cfg, steps=steps, upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise ) output = gr.update( elem_id='output_gallery', value=results, columns=min(len(results), 2), rows=int(len(results) / 2 + 0.5)) return output def process_tasks(task, func): outputs = func(task) mask = outputs[0] state = outputs[1:8] if state[5] is None: state[5] = default_upsampling_noise if state[6] is None: state[6] = default_steps images = outputs[8:-len(mask)] output = outputs[-len(mask):] for i in range(len(mask)): if mask[i] == 1: images.append(None) else: images.append(output[-len(mask) + i]) state[0] = state[0] - 1 cur_hrid_h = state[0] cur_hrid_w = state[1] current_example = [None] * 25 for i, image in enumerate(images): pos = (i // cur_hrid_w) * 5 + (i % cur_hrid_w) if image is not None: current_example[pos] = image update_grid(cur_hrid_h, cur_hrid_w) output = gr.update( elem_id='output_gallery', value=output, columns=min(len(output), 2), rows=int(len(output) / 2 + 0.5)) return [output] + current_example + state dense_prediction_tasks.click( partial(process_tasks, func=demo_tasks.process_dense_prediction_tasks), inputs=[dense_prediction_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) conditional_generation_tasks.click( partial(process_tasks, func=demo_tasks.process_conditional_generation_tasks), inputs=[conditional_generation_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) image_restoration_tasks.click( partial(process_tasks, func=demo_tasks.process_image_restoration_tasks), inputs=[image_restoration_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) style_transfer_tasks.click( partial(process_tasks, func=demo_tasks.process_style_transfer_tasks), inputs=[style_transfer_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) style_condition_fusion_tasks.click( partial(process_tasks, func=demo_tasks.process_style_condition_fusion_tasks), inputs=[style_condition_fusion_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) relighting_tasks.click( partial(process_tasks, func=demo_tasks.process_relighting_tasks), inputs=[relighting_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) tryon_tasks.click( partial(process_tasks, func=demo_tasks.process_tryon_tasks), inputs=[tryon_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) photodoodle_tasks.click( partial(process_tasks, func=demo_tasks.process_photodoodle_tasks), inputs=[photodoodle_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) editing_tasks.click( partial(process_tasks, func=demo_tasks.process_editing_tasks), inputs=[editing_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) unseen_tasks.click( partial(process_tasks, func=demo_tasks.process_unseen_tasks), inputs=[unseen_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) subject_driven_tasks.click( partial(process_tasks, func=demo_tasks.process_subject_driven_tasks), inputs=[subject_driven_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) style_transfer_with_subject_tasks.click( partial(process_tasks, func=demo_tasks.process_style_transfer_with_subject_tasks), inputs=[style_transfer_with_subject_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) condition_subject_fusion_tasks.click( partial(process_tasks, func=demo_tasks.process_condition_subject_fusion_tasks), inputs=[condition_subject_fusion_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) condition_subject_style_fusion_tasks.click( partial(process_tasks, func=demo_tasks.process_condition_subject_style_fusion_tasks), inputs=[condition_subject_style_fusion_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) editing_with_subject_tasks.click( partial(process_tasks, func=demo_tasks.process_editing_with_subject_tasks), inputs=[editing_with_subject_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) image_restoration_with_subject_tasks.click( partial(process_tasks, func=demo_tasks.process_image_restoration_with_subject_tasks), inputs=[image_restoration_with_subject_tasks], outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps], show_progress=False, queue=False) # Initialize grid model.set_grid_size(default_grid_h, default_grid_w) # Connect event processing function to all components that need updating output_components = all_image_inputs + rows + row_texts + [layout_prompt] grid_h.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components) grid_w.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components) # Modify generate button click event generate_btn.click( fn=generate_image, inputs=all_image_inputs + [seed, cfg, steps, upsampling_steps, upsampling_noise] + [layout_prompt, task_prompt, content_prompt], outputs=output_gallery ) return demo @spaces.GPU def generate( images, prompts, seed, cfg, steps, upsampling_steps, upsampling_noise): return model.process_images( images=images, prompts=prompts, seed=seed, cfg=cfg, steps=steps, upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default="models/visualcloze-384-lora.pth") parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16") parser.add_argument("--resolution", type=int, default=384) return parser.parse_args() if __name__ == "__main__": args = parse_args() snapshot_download(repo_id="VisualCloze/VisualCloze", repo_type="model", local_dir="models") # Initialize model model = VisualClozeModel(resolution=args.resolution, model_path=args.model_path, precision=args.precision) # Create Gradio demo demo = create_demo(model) # Start Gradio server demo.launch()