Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from dataclasses import dataclass | |
import torch | |
from einops import rearrange | |
from huggingface_hub import hf_hub_download | |
from PIL import ExifTags, Image | |
from safetensors.torch import load_file as load_sft | |
from models.model import Flux, FluxLoraWrapper, FluxParams | |
from models.modules.autoencoder import AutoEncoder, AutoEncoderParams | |
from models.modules.conditioner import HFEmbedder | |
def save_image( | |
nsfw_classifier, | |
name: str, | |
output_name: str, | |
idx: int, | |
x: torch.Tensor, | |
add_sampling_metadata: bool, | |
prompt: str, | |
nsfw_threshold: float = 0.85, | |
) -> int: | |
fn = output_name.format(idx=idx) | |
print(f"Saving {fn}") | |
# bring into PIL format and save | |
x = x.clamp(-1, 1) | |
x = embed_watermark(x.float()) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0] | |
if nsfw_score < nsfw_threshold: | |
exif_data = Image.Exif() | |
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" | |
exif_data[ExifTags.Base.Make] = "Black Forest Labs" | |
exif_data[ExifTags.Base.Model] = name | |
if add_sampling_metadata: | |
exif_data[ExifTags.Base.ImageDescription] = prompt | |
img.save(fn, exif=exif_data, quality=95, subsampling=0) | |
idx += 1 | |
else: | |
print("Your generated image may contain NSFW content.") | |
return idx | |
class ModelSpec: | |
params: FluxParams | |
ae_params: AutoEncoderParams | |
ckpt_path: str | None | |
lora_path: str | None | |
ae_path: str | None | |
repo_id: str | None | |
repo_flow: str | None | |
repo_ae: str | None | |
configs = { | |
"flux-dev": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV"), | |
lora_path=None, | |
params=FluxParams( | |
in_channels=64, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-lora": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV"), | |
lora_path="your_lora_path", | |
params=FluxParams( | |
in_channels=64, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-fill-lora": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-Fill-dev", | |
repo_flow="flux1-fill-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV_FILL"), | |
lora_path="your_lora_path", | |
params=FluxParams( | |
in_channels=384, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-schnell": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-schnell", | |
repo_flow="flux1-schnell.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_SCHNELL"), | |
lora_path=None, | |
params=FluxParams( | |
in_channels=64, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=False, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-canny": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-Canny-dev", | |
repo_flow="flux1-canny-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV_CANNY"), | |
lora_path=None, | |
params=FluxParams( | |
in_channels=128, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-canny-lora": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV"), | |
lora_path=os.getenv("FLUX_DEV_CANNY_LORA"), | |
params=FluxParams( | |
in_channels=128, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-depth": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-Depth-dev", | |
repo_flow="flux1-depth-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV_DEPTH"), | |
lora_path=None, | |
params=FluxParams( | |
in_channels=128, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-depth-lora": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV"), | |
lora_path=os.getenv("FLUX_DEV_DEPTH_LORA"), | |
params=FluxParams( | |
in_channels=128, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-fill": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-Fill-dev", | |
repo_flow="flux1-fill-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV_FILL"), | |
lora_path=None, | |
params=FluxParams( | |
in_channels=384, | |
out_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
} | |
def print_load_warning(missing: list[str], unexpected: list[str]) -> None: | |
if len(missing) > 0 and len(unexpected) > 0: | |
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
print("\n" + "-" * 79 + "\n") | |
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
elif len(missing) > 0: | |
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
elif len(unexpected) > 0: | |
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
def load_flow_model( | |
name: str, device: str | torch.device = "cuda", hf_download: bool = True, verbose: bool = True, lora_rank: int = 128, lora_scale: float = 1.0 | |
) -> Flux: | |
# Loading Flux | |
print("Init model") | |
ckpt_path = configs[name].ckpt_path | |
lora_path = configs[name].lora_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_flow is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow) | |
print(f"ckpt_path: {ckpt_path}, lora_path: {lora_path}") | |
# with torch.device("meta" if ckpt_path is not None else device): | |
if lora_path is not None: | |
model = FluxLoraWrapper(params=configs[name].params, lora_rank=lora_rank, lora_scale=lora_scale).to(torch.bfloat16) | |
else: | |
model = Flux(configs[name].params).to(torch.bfloat16) | |
if ckpt_path is not None: | |
print("Loading checkpoint") | |
# load_sft doesn't support torch.device | |
sd = load_sft(ckpt_path, device=str(device)) | |
sd = optionally_expand_state_dict(model, sd) | |
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
# if verbose: | |
# print_load_warning(missing, unexpected) | |
if configs[name].lora_path is not None and os.path.exists(configs[name].lora_path): | |
print("Loading LoRA") | |
lora_sd = load_sft(configs[name].lora_path, device=str(device)) | |
# loading the lora params + overwriting scale values in the norms | |
missing, unexpected = model.load_state_dict(lora_sd, strict=False, assign=True) | |
# if verbose: | |
# print_load_warning(missing, unexpected) | |
return model | |
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: | |
# max length 64, 128, 256 and 512 should work (if your sequence is short enough) | |
return HFEmbedder("google/t5-v1_1-xxl", max_length=max_length, torch_dtype=torch.bfloat16).to(device) | |
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder: | |
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) | |
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder: | |
ckpt_path = configs[name].ae_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_ae is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae) | |
# Loading the autoencoder | |
print("Init AE") | |
with torch.device("meta" if ckpt_path is not None else device): | |
ae = AutoEncoder(configs[name].ae_params) | |
if ckpt_path is not None: | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True) | |
print_load_warning(missing, unexpected) | |
return ae | |
def optionally_expand_state_dict(model: torch.nn.Module, state_dict: dict) -> dict: | |
""" | |
Optionally expand the state dict to match the model's parameters shapes. | |
""" | |
for name, param in model.named_parameters(): | |
if name in state_dict: | |
if state_dict[name].shape != param.shape: | |
print( | |
f"Expanding '{name}' with shape {state_dict[name].shape} to model parameter with shape {param.shape}." | |
) | |
# expand with zeros: | |
expanded_state_dict_weight = torch.zeros_like(param, device=state_dict[name].device) | |
slices = tuple(slice(0, dim) for dim in state_dict[name].shape) | |
expanded_state_dict_weight[slices] = state_dict[name] | |
state_dict[name] = expanded_state_dict_weight | |
return state_dict | |