Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
from scipy.ndimage import zoom as scizoom | |
from numba import njit, prange | |
import numpy as np | |
import math | |
def gen_lensmask(h, w, gamma): | |
""" | |
Generate lens mask with shape (h, w). | |
For point (i, j), | |
distance = [(i - h // 2)^2 + (j - w // 2)^2] ^ (1/2) / [h // 2)^2 + (w // 2)^2] ^ (1/2) | |
mask = scale * (1 - distance) ^ gamma | |
@param h: height | |
@param w: width | |
@param gamma: exponential factor | |
@return: Mask, H x W | |
""" | |
dist1 = np.array([list(range(w))] * h) - w // 2 | |
dist2 = np.array([list(range(h))] * w) - h // 2 | |
dist2 = np.transpose(dist2, (1, 0)) | |
dist = np.sqrt((dist1 ** 2 + dist2 ** 2)) / np.sqrt((w ** 2 + h ** 2) / 4) | |
mask = (1 - dist) ** gamma | |
return mask | |
def gen_disk(radius, dtype=np.float32): | |
if radius <= 8: | |
L = np.arange(-8, 8 + 1) | |
else: | |
L = np.arange(-radius, radius + 1) | |
X, Y = np.meshgrid(L, L) | |
disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) | |
disk /= np.sum(disk) | |
return disk | |
# modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py | |
def plasma_fractal(mapsize=256, wibbledecay=3): | |
""" | |
Generate a heightmap using diamond-square algorithm. | |
Return square 2d array, side length 'mapsize', of floats in range 0-255. | |
'mapsize' must be a power of two. | |
""" | |
assert (mapsize & (mapsize - 1) == 0) | |
maparray = np.empty((mapsize, mapsize), dtype=np.float_) | |
maparray[0, 0] = 0 | |
stepsize = mapsize | |
wibble = 100 | |
def wibbledmean(array): | |
return array / 4 + wibble * np.random.uniform(-wibble, wibble, | |
array.shape) | |
def fillsquares(): | |
"""For each square of points stepsize apart, | |
calculate middle value as mean of points + wibble""" | |
cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] | |
squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) | |
squareaccum += np.roll(squareaccum, shift=-1, axis=1) | |
maparray[stepsize // 2:mapsize:stepsize, | |
stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) | |
def filldiamonds(): | |
"""For each diamond of points stepsize apart, | |
calculate middle value as mean of points + wibble""" | |
mapsize = maparray.shape[0] | |
drgrid = maparray[stepsize // 2:mapsize:stepsize, | |
stepsize // 2:mapsize:stepsize] | |
ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] | |
ldrsum = drgrid + np.roll(drgrid, 1, axis=0) | |
lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) | |
ltsum = ldrsum + lulsum | |
maparray[0:mapsize:stepsize, | |
stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) | |
tdrsum = drgrid + np.roll(drgrid, 1, axis=1) | |
tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) | |
ttsum = tdrsum + tulsum | |
maparray[stepsize // 2:mapsize:stepsize, | |
0:mapsize:stepsize] = wibbledmean(ttsum) | |
while stepsize >= 2: | |
fillsquares() | |
filldiamonds() | |
stepsize //= 2 | |
wibble /= wibbledecay | |
maparray -= maparray.min() | |
return maparray / maparray.max() | |
def clipped_zoom(img, zoom_factor): | |
# clipping along the width dimension: | |
ch0 = int(np.ceil(img.shape[0] / float(zoom_factor))) | |
top0 = (img.shape[0] - ch0) // 2 | |
# clipping along the height dimension: | |
ch1 = int(np.ceil(img.shape[1] / float(zoom_factor))) | |
top1 = (img.shape[1] - ch1) // 2 | |
img = scizoom(img[top0:top0 + ch0, top1:top1 + ch1], | |
(zoom_factor, zoom_factor, 1), order=1) | |
return img | |
def getOptimalKernelWidth1D(radius, sigma): | |
return radius * 2 + 1 | |
def gauss_function(x, mean, sigma): | |
return (np.exp(- (x - mean)**2 / (2 * (sigma**2)))) / (np.sqrt(2 * np.pi) * sigma) | |
def getMotionBlurKernel(width, sigma): | |
k = gauss_function(np.arange(width), 0, sigma) | |
Z = np.sum(k) | |
return k/Z | |
def shift(image, dx, dy): | |
if(dx < 0): | |
shifted = np.roll(image, shift=image.shape[1]+dx, axis=1) | |
shifted[:,dx:] = shifted[:,dx-1:dx] | |
elif(dx > 0): | |
shifted = np.roll(image, shift=dx, axis=1) | |
shifted[:,:dx] = shifted[:,dx:dx+1] | |
else: | |
shifted = image | |
if(dy < 0): | |
shifted = np.roll(shifted, shift=image.shape[0]+dy, axis=0) | |
shifted[dy:,:] = shifted[dy-1:dy,:] | |
elif(dy > 0): | |
shifted = np.roll(shifted, shift=dy, axis=0) | |
shifted[:dy,:] = shifted[dy:dy+1,:] | |
return shifted | |
def _motion_blur(x, radius, sigma, angle): | |
width = getOptimalKernelWidth1D(radius, sigma) | |
kernel = getMotionBlurKernel(width, sigma) | |
point = (width * np.sin(np.deg2rad(angle)), width * np.cos(np.deg2rad(angle))) | |
hypot = math.hypot(point[0], point[1]) | |
blurred = np.zeros_like(x, dtype=np.float32) | |
for i in range(width): | |
dy = -math.ceil(((i*point[0]) / hypot) - 0.5) | |
dx = -math.ceil(((i*point[1]) / hypot) - 0.5) | |
if (np.abs(dy) >= x.shape[0] or np.abs(dx) >= x.shape[1]): | |
# simulated motion exceeded image borders | |
break | |
shifted = shift(x, dx, dy) | |
blurred = blurred + kernel[i] * shifted | |
return blurred | |
# Numba nopython compilation to shuffle_pixles | |
def shuffle_pixels_njit(img, shift, iteration): | |
height, width = img.shape[:2] | |
# locally shuffle pixels | |
for _ in range(iteration): | |
for h in range(height - shift, shift, -1): | |
for w in range(width - shift, shift, -1): | |
dx, dy = np.random.randint(-shift, shift, size=(2,)) | |
h_prime, w_prime = h + dy, w + dx | |
# swap | |
img[h, w], img[h_prime, w_prime] = img[h_prime, w_prime], img[h, w] | |
return img | |