VisualCloze / degradation_toolkit /add_degradation_various.py
lzyhha
init
319886d
raw
history blame
12.1 kB
import os
import numpy as np
import random
import cv2
import math
from scipy import special
from skimage import restoration
import torch
from torch.nn import functional as F
from torchvision.utils import make_grid
def uint2single(img):
return np.float32(img/255.)
def single2uint(img):
return np.uint8((img.clip(0, 1)*255.).round())
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def get_noise(img, value=10):
noise = np.random.uniform(0, 256, img.shape[0:2])
v = value * 0.01
noise[np.where(noise < (256 - v))] = 0
k = np.array([[0, 0.1, 0],
[0.1, 8, 0.1],
[0, 0.1, 0]])
noise = cv2.filter2D(noise, -1, k)
'''cv2.imshow('img',noise)
cv2.waitKey()
cv2.destroyWindow('img')'''
return noise
def rain_blur(noise, length=10, angle=0, w=1):
trans = cv2.getRotationMatrix2D((length / 2, length / 2), angle - 45, 1 - length / 100.0)
dig = np.diag(np.ones(length))
k = cv2.warpAffine(dig, trans, (length, length))
k = cv2.GaussianBlur(k, (w, w), 0)
blurred = cv2.filter2D(noise, -1, k)
cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
blurred = np.array(blurred, dtype=np.uint8)
rain = np.expand_dims(blurred, 2)
blurred = np.repeat(rain, 3, 2)
return blurred
def add_rain(img,value):
if np.max(img) > 1:
pass
else:
img = img*255
w, h, c = img.shape
h = h - (h % 4)
w = w - (w % 4)
img = img[0:w, 0:h, :]
w = np.random.choice([3, 5, 7, 9, 11], p=[0.2, 0.2, 0.2, 0.2, 0.2])
length = np.random.randint(30, 41)
angle = np.random.randint(-45, 45)
noise = get_noise(img, value=value)
rain = rain_blur(noise, length=length, angle=angle, w=w)
img = img.astype('float32') + rain
np.clip(img, 0, 255, out=img)
img = img/255.0
return img
def add_rain_range(img, value_min, value_max):
value = np.random.randint(value_min, value_max)
if np.max(img) > 1:
pass
else:
img = img*255
w, h, c = img.shape
h = h - (h % 4)
w = w - (w % 4)
img = img[0:w, 0:h, :]
w = np.random.choice([3, 5, 7, 9, 11], p=[0.2, 0.2, 0.2, 0.2, 0.2])
length = np.random.randint(30, 41)
angle = np.random.randint(-45, 45)
noise = get_noise(img, value=value)
rain = rain_blur(noise, length=length, angle=angle, w=w)
img = img.astype('float32') + rain
np.clip(img, 0, 255, out=img)
img = img/255.0
return img
def add_Poisson_noise(img, level=2):
# input range[0, 1]
vals = 10**(level)
img = np.random.poisson(img * vals).astype(np.float32) / vals
img = np.clip(img, 0.0, 1.0)
return img
def add_Gaussian_noise(img, level=20):
# input range[0, 1]
noise_level = level / 255.0
noise_map = np.random.normal(loc=0.0, scale=1.0, size=img.shape)*noise_level
img += noise_map
img = np.clip(img, 0.0, 1.0)
return img
def add_Gaussian_noise_range(img, min_level=10, max_level=50):
# input range[0, 1]
level = random.uniform(min_level, max_level)
noise_level = level / 255.0
noise_map = np.random.normal(loc=0.0, scale=1.0, size=img.shape)*noise_level
img += noise_map
img = np.clip(img, 0.0, 1.0)
return img
def add_sp_noise(img, snr=0.95, salt_pro=0.5):
# input range[0, 1]
output = np.copy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
rdn = random.random()
if rdn < snr:
output[i][j] = img[i][j]
else:
rdn = random.random()
if rdn < salt_pro:
output[i][j] = 1
else:
output[i][j] = 0
return output
def add_JPEG_noise(img, level):
quality_factor = level
img = single2uint(img)
_, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img = cv2.imdecode(encimg, 1)
img = uint2single(img)
return img
def add_JPEG_noise_range(img, level_min, level_max):
quality_factor = random.randint(level_min, level_max)
img = single2uint(img)
_, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img = cv2.imdecode(encimg, 1)
img = uint2single(img)
return img
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
"""2D sinc filter, ref: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
Args:
cutoff (float): cutoff frequency in radians (pi is max)
kernel_size (int): horizontal and vertical size, must be odd.
pad_to (int): pad kernel size to desired size, must be odd or zero.
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
kernel = np.fromfunction(
lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
(x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2)) / ((2 * np.pi * np.sqrt(
(x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2)) + 1e-9), [kernel_size, kernel_size])
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff ** 2 / (4 * np.pi)
kernel = kernel / np.sum(kernel)
if pad_to > kernel_size:
pad_size = (pad_to - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
return kernel
def filter2D(img, kernel):
"""PyTorch version of cv2.filter2D
Args:
img (Tensor): (b, c, h, w)
kernel (Tensor): (b, k, k)
"""
k = kernel.size(-1)
b, c, h, w = img.size()
if k % 2 == 1:
img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect')
else:
raise ValueError('Wrong kernel size')
ph, pw = img.size()[-2:]
if kernel.size(0) == 1:
# apply the same kernel to all batch images
img = img.view(b * c, 1, ph, pw)
kernel = kernel.view(1, 1, k, k)
return F.conv2d(img, kernel, padding=0).view(b, c, h, w)
else:
img = img.view(1, b * c, ph, pw)
kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k)
return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w)
def sinc(img, kernel_size,omega_c):
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
sinc_kernel = torch.FloatTensor(sinc_kernel)
img = filter2D(img,sinc_kernel)
return img
def add_ringing(img):
# input: [0, 1]
img = img2tensor([img])[0].unsqueeze(0)
ks = 15
omega_c = round(1.2, 2)
img = sinc(img, ks, omega_c)
img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
img = tensor2img(img, min_max=(0, 1))
img = img/255.0
return img
def low_light(img, lum_scale):
img = img*lum_scale
return img
def low_light_range(img):
lum_scale = random.uniform(0.1, 0.5)
img = img*lum_scale
return img
def iso_GaussianBlur(img, window, sigma):
img = cv2.GaussianBlur(img.copy(), (window, window), sigma)
return img
def iso_GaussianBlur_range(img, window, min_sigma=2, max_sigma=4):
sigma = random.uniform(min_sigma, max_sigma)
img = cv2.GaussianBlur(img.copy(), (window, window), sigma)
return img
def add_resize(img):
ori_H, ori_W = img.shape[0], img.shape[1]
rnum = np.random.rand()
if rnum > 0.8: # up
sf1 = random.uniform(1, 2)
elif rnum < 0.7: # down
sf1 = random.uniform(0.2, 1)
else:
sf1 = 1.0
img = cv2.resize(img, (int(sf1*img.shape[1]), int(sf1*img.shape[0])), interpolation=random.choice([1, 2, 3]))
img = cv2.resize(img, (int(ori_W), int(ori_H)), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
return img
def r_l(img):
img = img2tensor([img],bgr2rgb=False)[0].unsqueeze(0)
psf = np.ones((1, 1, 5, 5))
psf = psf / psf.sum()
img = img.numpy()
img = np.pad(img, ((0, 0), (0, 0), (7, 7), (7, 7)), 'linear_ramp')
img = restoration.richardson_lucy(img, psf, 1)
img = img[:, :, 7:-7, 7:-7]
img = torch.from_numpy(img)
img = img.squeeze(0).numpy().transpose(1, 2, 0)
return img
def inpainting(img,l_num,l_thick):
ori_h, ori_w = img.shape[0], img.shape[1]
mask = np.zeros((ori_h, ori_w, 3), np.uint8)
col = random.choice(['white', 'black'])
while (l_num):
x1, y1 = random.randint(0, ori_w), random.randint(0, ori_h)
x2, y2 = random.randint(0, ori_w), random.randint(0, ori_h)
pts = np.array([[x1, y1], [x2, y2]], np.int32)
pts = pts.reshape((-1, 1, 2))
mask = cv2.polylines(mask, [pts], 0, (1, 1, 1), l_thick)
l_num -= 1
if col == 'white':
img = np.clip(img + mask, 0, 1)
else:
img = np.clip(img - mask, 0, 1)
return img