File size: 5,855 Bytes
319886d
 
 
 
 
 
af44a4b
319886d
 
 
 
 
 
 
af44a4b
319886d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from dataclasses import dataclass
from typing import List

import torch
from torch import Tensor, nn

from models.modules.layers import (
    DoubleStreamBlock,
    EmbedND,
    LastLayer,
    MLPEmbedder,
    SingleStreamBlock,
    timestep_embedding,
)
from models.modules.lora import LinearLora, replace_linear_with_lora


@dataclass
class FluxParams:
    in_channels: int
    out_channels: int
    vec_in_dim: int
    context_in_dim: int
    hidden_size: int
    mlp_ratio: float
    num_heads: int
    depth: int
    depth_single_blocks: int
    axes_dim: list[int]
    theta: int
    qkv_bias: bool
    guidance_embed: bool


class Flux(nn.Module):
    """
    Transformer model for flow matching on sequences.
    """

    def __init__(self, params: FluxParams):
        super().__init__()

        self.params = params
        self.in_channels = params.in_channels
        self.out_channels = params.out_channels
        if params.hidden_size % params.num_heads != 0:
            raise ValueError(
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
            )
        pe_dim = params.hidden_size // params.num_heads
        if sum(params.axes_dim) != pe_dim:
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = params.hidden_size
        self.num_heads = params.num_heads
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
        self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
        self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
        self.guidance_in = (
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
        )
        self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=params.mlp_ratio,
                    qkv_bias=params.qkv_bias,
                )
                for _ in range(params.depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
                for _ in range(params.depth_single_blocks)
            ]
        )

        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)

    def forward(
        self,
        img: Tensor,
        img_ids: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        timesteps: Tensor,
        y: Tensor,
        txt_mask: Tensor = None,
        img_mask: Tensor = None,
        guidance: Tensor | None = None,
    ) -> Tensor:
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")

        # running on sequences img
        img = self.img_in(img)
        vec = self.time_in(timestep_embedding(timesteps, 256))
        if self.params.guidance_embed:
            if guidance is None:
                raise ValueError("Didn't get guidance strength for guidance distilled model.")
            vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
        vec = vec + self.vector_in(y)
        txt = self.txt_in(txt)

        ids = torch.cat((txt_ids, img_ids), dim=1)
        pe = self.pe_embedder(ids)

        for block in self.double_blocks:
            img, txt = block(img=img, txt=txt, vec=vec, pe=pe, img_mask=img_mask, txt_mask=txt_mask)

        img = torch.cat((txt, img), 1)
        attn_mask = torch.cat((txt_mask, img_mask), 1)
        for block in self.single_blocks:
            img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
        img = img[:, txt.shape[1] :, ...]

        img = self.final_layer(img, vec)  # (N, T, patch_size ** 2 * out_channels)
        # print(f'flux out {img.shape} {img.mean()}')
        return img

    def forward_with_cfg(
        self,
        img: Tensor,
        img_ids: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        timesteps: Tensor,
        y: Tensor,
        txt_mask: Tensor = None,
        img_mask: Tensor = None,
        guidance: Tensor | None = None,
        cfg_scale: float = 1.0,
    ) -> Tensor:
        half = img[: len(img) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(img, img_ids, txt, txt_ids, timesteps, y, txt_mask, img_mask, guidance)
        cond_v, uncond_v = torch.split(model_out, len(model_out) // 2, dim=0)
        cond_v = uncond_v + cfg_scale * (cond_v - uncond_v)
        img = torch.cat([cond_v, uncond_v], dim=0)
        return img

    def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
        return list(self.double_blocks) + list(self.single_blocks) + [self.final_layer] + [self.img_in, self.vector_in, self.guidance_in, self.txt_in, self.time_in]

    def get_checkpointing_wrap_module_list(self) -> List[nn.Module]:
        return list(self.double_blocks) + list(self.single_blocks) + [self.final_layer] + [self.img_in, self.vector_in, self.guidance_in, self.txt_in, self.time_in]


class FluxLoraWrapper(Flux):
    def __init__(
        self,
        lora_rank: int = 128,
        lora_scale: float = 1.0,
        *args,
        **kwargs,
    ) -> None:
        super().__init__(*args, **kwargs)

        self.lora_rank = lora_rank

        replace_linear_with_lora(
            self,
            max_rank=lora_rank,
            scale=lora_scale,
        )

    def set_lora_scale(self, scale: float) -> None:
        for module in self.modules():
            if isinstance(module, LinearLora):
                module.set_scale(scale=scale)