Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,268 Bytes
319886d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import cv2
import numpy as np
from skimage.filters import gaussian
from .helper import (
_motion_blur,
shuffle_pixels_njit,
clipped_zoom,
gen_disk,
gen_lensmask,
)
def blur_gaussian(img, severity=1):
"""
Gaussian Blur.
severity=[1, 2, 3, 4, 5] corresponding to sigma=[1, 2, 3, 4, 5].
severity mainly refer to KADID-10K and Imagecorruptions.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [1, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [1, 2, 3, 4, 5][severity - 1]
img = np.array(img) / 255.
img = gaussian(img, sigma=c, channel_axis=-1)
img = np.clip(img, 0, 1) * 255
return img.round().astype(np.uint8)
def blur_gaussian_lensmask(img, severity=1):
"""
Gaussian Blur with Lens Mask.
severity=[1, 2, 3, 4, 5] corresponding to
[gamma, sigma]=[[2.0, 2], [2.4, 4], [3.0, 6], [3.8, 8], [5.0, 10]].
severity mainly refer to PieAPP.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [1, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [(2.0, 2), (2.4, 4), (3.0, 6), (3.8, 8), (5.0, 10)][severity - 1]
img_orig = np.array(img) / 255.
h, w = img.shape[:2]
mask = gen_lensmask(h, w, gamma=c[0])[:, :, None]
img = gaussian(img_orig, sigma=c[1], channel_axis=-1)
img = mask * img_orig + (1 - mask) * img
img = np.clip(img, 0, 1) * 255
return img.round().astype(np.uint8)
def blur_motion(img, severity=1):
"""
Motion Blur.
severity = [1, 2, 3, 4, 5] corresponding to radius=[5, 10, 15, 15, 20] and
sigma=[1, 2, 3, 4, 5].
severity mainly refer to Imagecorruptions.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [0, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [(5, 3), (10, 5), (15, 7), (15, 9), (20, 12)][severity - 1]
angle = np.random.uniform(-90, 90)
img = np.array(img)
img = _motion_blur(img, radius=c[0], sigma=c[1], angle=angle)
img = np.clip(img, 0, 255)
return img.round().astype(np.uint8)
def blur_glass(img, severity=1):
"""
Glass Blur.
severity = [1, 2, 3, 4, 5] corresponding to
[sigma, shift, iteration]=[(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)].
severity mainly refer to Imagecorruptions.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [0, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)][severity - 1]
img = np.array(img) / 255.
img = gaussian(img, sigma=c[0], channel_axis=-1)
img = shuffle_pixels_njit(img, shift=c[1], iteration=c[2])
img = np.clip(gaussian(img, sigma=c[0], channel_axis=-1), 0, 1) * 255
return img.round().astype(np.uint8)
def blur_lens(img, severity=1):
"""
Lens Blur.
severity = [1, 2, 3, 4, 5] corresponding to radius=[2, 3, 4, 6, 8].
severity mainly refer to KADID-10K.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [0, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [2, 3, 4, 6, 8][severity - 1]
img = np.array(img) / 255.
kernel = gen_disk(radius=c)
img_lq = []
for i in range(3):
img_lq.append(cv2.filter2D(img[:, :, i], -1, kernel))
img_lq = np.array(img_lq).transpose((1, 2, 0))
img_lq = np.clip(img_lq, 0, 1) * 255
return img_lq.round().astype(np.uint8)
def blur_zoom(img, severity=1):
"""
Zoom Blur.
severity = [1, 2, 3, 4, 5] corresponding to radius=
[np.arange(1, 1.03, 0.02),
np.arange(1, 1.06, 0.02),
np.arange(1, 1.10, 0.02),
np.arange(1, 1.15, 0.02),
np.arange(1, 1.21, 0.02)].
severity mainly refer to Imagecorruptions.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [0, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [np.arange(1, 1.03, 0.02),
np.arange(1, 1.06, 0.02),
np.arange(1, 1.10, 0.02),
np.arange(1, 1.15, 0.02),
np.arange(1, 1.21, 0.02)][severity - 1]
img = (np.array(img) / 255.).astype(np.float32)
h, w = img.shape[:2]
img_lq = np.zeros_like(img)
for zoom_factor in c:
zoom_layer = clipped_zoom(img, zoom_factor)
img_lq += zoom_layer[:h, :w, :]
img_lq = (img + img_lq) / (len(c) + 1)
img_lq = np.clip(img_lq, 0, 1) * 255
return img_lq.round().astype(np.uint8)
def blur_jitter(img, severity=1):
"""
Jitter Blur.
severity = [1, 2, 3, 4, 5] corresponding to shift=[1, 2, 3, 4, 5].
severity mainly refer to KADID-10K.
@param img: Input image, H x W x 3, value range [0, 255]
@param severity: Severity of distortion, [0, 5]
@return: Degraded image, H x W x 3, value range [0, 255]
"""
c = [1, 2, 3, 4, 5][severity - 1]
img = np.array(img)
img_lq = shuffle_pixels_njit(img, shift=c, iteration=1)
return np.uint8(img_lq)
|