File size: 5,268 Bytes
319886d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2
import numpy as np

from skimage.filters import gaussian
from .helper import (
    _motion_blur,
    shuffle_pixels_njit, 
    clipped_zoom, 
    gen_disk, 
    gen_lensmask, 
)


def blur_gaussian(img, severity=1):
    """
    Gaussian Blur. 
    severity=[1, 2, 3, 4, 5] corresponding to sigma=[1, 2, 3, 4, 5].
    severity mainly refer to KADID-10K and Imagecorruptions.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [1, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [1, 2, 3, 4, 5][severity - 1]
    img = np.array(img) / 255.
    img = gaussian(img, sigma=c, channel_axis=-1)
    img = np.clip(img, 0, 1) * 255
    return img.round().astype(np.uint8)


def blur_gaussian_lensmask(img, severity=1):
    """
    Gaussian Blur with Lens Mask. 
    severity=[1, 2, 3, 4, 5] corresponding to 
    [gamma, sigma]=[[2.0, 2], [2.4, 4], [3.0, 6], [3.8, 8], [5.0, 10]].
    severity mainly refer to PieAPP.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [1, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [(2.0, 2), (2.4, 4), (3.0, 6), (3.8, 8), (5.0, 10)][severity - 1]
    img_orig = np.array(img) / 255.
    h, w = img.shape[:2]
    mask = gen_lensmask(h, w, gamma=c[0])[:, :, None]
    img = gaussian(img_orig, sigma=c[1], channel_axis=-1)
    img = mask * img_orig + (1 - mask) * img
    img = np.clip(img, 0, 1) * 255
    return img.round().astype(np.uint8)


def blur_motion(img, severity=1):
    """
    Motion Blur. 
    severity = [1, 2, 3, 4, 5] corresponding to radius=[5, 10, 15, 15, 20] and
    sigma=[1, 2, 3, 4, 5].
    severity mainly refer to Imagecorruptions.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [0, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [(5, 3), (10, 5), (15, 7), (15, 9), (20, 12)][severity - 1]
    angle = np.random.uniform(-90, 90)
    img = np.array(img)
    img = _motion_blur(img, radius=c[0], sigma=c[1], angle=angle)
    img = np.clip(img, 0, 255)
    return img.round().astype(np.uint8)


def blur_glass(img, severity=1):
    """
    Glass Blur. 
    severity = [1, 2, 3, 4, 5] corresponding to 
    [sigma, shift, iteration]=[(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)].
    severity mainly refer to Imagecorruptions.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [0, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)][severity - 1]
    img = np.array(img) / 255.
    img = gaussian(img, sigma=c[0], channel_axis=-1)
    img = shuffle_pixels_njit(img, shift=c[1], iteration=c[2])
    img = np.clip(gaussian(img, sigma=c[0], channel_axis=-1), 0, 1) * 255
    return img.round().astype(np.uint8)


def blur_lens(img, severity=1):
    """
    Lens Blur. 
    severity = [1, 2, 3, 4, 5] corresponding to radius=[2, 3, 4, 6, 8].
    severity mainly refer to KADID-10K.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [0, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [2, 3, 4, 6, 8][severity - 1]
    img = np.array(img) / 255.
    kernel = gen_disk(radius=c)
    img_lq = []
    for i in range(3):
        img_lq.append(cv2.filter2D(img[:, :, i], -1, kernel))
    img_lq = np.array(img_lq).transpose((1, 2, 0))
    img_lq = np.clip(img_lq, 0, 1) * 255
    return img_lq.round().astype(np.uint8)


def blur_zoom(img, severity=1):
    """
    Zoom Blur. 
    severity = [1, 2, 3, 4, 5] corresponding to radius=
        [np.arange(1, 1.03, 0.02),
         np.arange(1, 1.06, 0.02),
         np.arange(1, 1.10, 0.02),
         np.arange(1, 1.15, 0.02),
         np.arange(1, 1.21, 0.02)].
    severity mainly refer to Imagecorruptions.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [0, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [np.arange(1, 1.03, 0.02),
         np.arange(1, 1.06, 0.02),
         np.arange(1, 1.10, 0.02),
         np.arange(1, 1.15, 0.02),
         np.arange(1, 1.21, 0.02)][severity - 1]
    img = (np.array(img) / 255.).astype(np.float32)
    h, w = img.shape[:2]
    img_lq = np.zeros_like(img)
    for zoom_factor in c:
        zoom_layer = clipped_zoom(img, zoom_factor)
        img_lq += zoom_layer[:h, :w, :]
    img_lq = (img + img_lq) / (len(c) + 1)
    img_lq = np.clip(img_lq, 0, 1) * 255
    return img_lq.round().astype(np.uint8)


def blur_jitter(img, severity=1):
    """
    Jitter Blur.
    severity = [1, 2, 3, 4, 5] corresponding to shift=[1, 2, 3, 4, 5]. 
    severity mainly refer to KADID-10K.

    @param img: Input image, H x W x 3, value range [0, 255]
    @param severity: Severity of distortion, [0, 5]
    @return: Degraded image, H x W x 3, value range [0, 255]
    """
    c = [1, 2, 3, 4, 5][severity - 1]
    img = np.array(img)
    img_lq = shuffle_pixels_njit(img, shift=c, iteration=1)
    return np.uint8(img_lq)