File size: 14,450 Bytes
af44a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
import cv2
import numpy as np
import argparse 
from skimage.filters import gaussian
from scipy.ndimage.interpolation import map_coordinates
from tqdm import tqdm
from PIL import Image


def single2uint(img):
    return np.uint8((img.clip(0, 1)*255.).round())


def uint2single(img):
    return np.float32(img/255.)


def Laplacian_edge_detector(img):
    # input: [0, 1]
    # return: [0, 1] (H, W, 3)
    img = np.clip(img*255, 0, 255).astype(np.uint8) # (H, W, 3)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.Laplacian(img, cv2.CV_16S) # (H, W)
    img = cv2.convertScaleAbs(img)
    img = img.astype(np.float32) / 255.
    img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
    return img


def Laplacian_edge_detector_uint8(img):
    # input: [0, 255]
    # return: [0, 255] (H, W, 3)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.Laplacian(img, cv2.CV_16S) # (H, W)
    img = cv2.convertScaleAbs(img)
    img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
    return img


def Canny_edge_detector(img):
    # input: [0, 1]
    # return: [0, 1] (H, W, 3)
    img = np.clip(img*255, 0, 255).astype(np.uint8) # (H, W, 3)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.Canny(img, 50, 200) # (H, W)
    img = cv2.convertScaleAbs(img)
    img = img.astype(np.float32) / 255.
    img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
    return img


def Canny_edge_detector_uint8(img):
    # input: [0, 255]
    # return: [0, 255] (H, W, 3)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.Canny(img, 50, 200) # (H, W)
    img = cv2.convertScaleAbs(img)
    img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
    return img


def Sobel_edge_detector(img):
    # input: [0, 1]
    # return: [0, 1] (H, W, 3)
    img = np.clip(img*255, 0, 255).astype(np.uint8) # (H, W, 3)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.Sobel(img, cv2.CV_16S, 1, 1) # (H, W)
    img = cv2.convertScaleAbs(img)
    img = img.astype(np.float32) / 255.
    img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
    return img


def erosion(img, kernel_size=5):
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    img = cv2.erode(img, kernel, iterations=1)
    return img


def dilatation(img, kernel_size=5):
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    img = cv2.dilate(img, kernel, iterations=1)
    return img


def opening(img):
    return dilatation(erosion(img))


def closing(img):
    return erosion(dilatation(img))


def morphological_gradient(img):
    return dilatation(img) - erosion(img)


def top_hat(img):
    return img - opening(img)


def black_hat(img):
    return closing(img) - img


def adjust_contrast(image, clip_limit=2.0, tile_grid_size=(8, 8)):
    
    image = single2uint(image)
    lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)

    l, a, b = cv2.split(lab)

    clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
    l_eq = clahe.apply(l)

    lab_eq = cv2.merge((l_eq, a, b))
    result = cv2.cvtColor(lab_eq, cv2.COLOR_LAB2BGR)

    result = uint2single(result)
    return result


def embossing(img):
    kernel = np.array([[0, -1, -1],
                       [1, 0, -1],
                       [1, 1, 0]])
    return cv2.filter2D(img, -1, kernel)


def hough_transform_line_detection(img):
    img = single2uint(img)
    dst = cv2.Canny(img, 50, 200, apertureSize=3)
    cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
    lines = cv2.HoughLinesP(dst, 1, np.pi / 180, 230, None, 0, 0)
    if lines is not None:
        for i in range(0, len(lines)):
            rho = lines[i][0][0]
            theta = lines[i][0][1]
            a = np.cos(theta)
            b = np.sin(theta)

            x0 = a * rho
            y0 = b * rho
            pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))

            pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))
            cv2.line(img, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
    
    return uint2single(img)


def hough_circle_detection(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=50, maxRadius=200)
    circles = np.uint16(np.around(circles))
    for i in circles[0, :]:
        cv2.circle(img, (i[0], i[1]), i[2], (0, 0, 255), 2)
    return img


def disk(radius, alias_blur=0.1, dtype=np.float32):
    if radius <= 8:
        L = np.arange(-8, 8 + 1)
        ksize = (3, 3)
    else:
        L = np.arange(-radius, radius + 1)
        ksize = (5, 5)
    X, Y = np.meshgrid(L, L)
    aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype)
    aliased_disk /= np.sum(aliased_disk)

    # supersample disk to antialias
    return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur)


def defocus_blur(image, level=(1, 0.1)):
    c = level
    kernel = disk(radius=c[0], alias_blur=c[1])

    channels = []
    for d in range(3):
        channels.append(cv2.filter2D(image[:, :, d], -1, kernel))
    channels = np.array(channels).transpose((1, 2, 0))  # 3x64x64 -> 64x64x3

    return np.clip(channels, 0, 1)


def masks_CFA_Bayer(shape):
    pattern = "RGGB"
    channels = dict((channel, np.zeros(shape)) for channel in "RGB")
    for channel, (y, x) in zip(pattern, [(0, 0), (0, 1), (1, 0), (1, 1)]):
        channels[channel][y::2, x::2] = 1
    return tuple(channels[c].astype(bool) for c in "RGB")


def cfa4_to_rgb(CFA4):
    RGB = np.zeros((CFA4.shape[0]*2, CFA4.shape[1]*2, 3), dtype=np.uint8)
    RGB[0::2, 0::2, 0] = CFA4[:, :, 0]  # R
    RGB[0::2, 1::2, 1] = CFA4[:, :, 1]  # G on R row
    RGB[1::2, 0::2, 1] = CFA4[:, :, 2]  # G on B row
    RGB[1::2, 1::2, 2] = CFA4[:, :, 3]  # B

    return RGB


def mosaic_CFA_Bayer(RGB):
    RGB = single2uint(RGB)
    R_m, G_m, B_m = masks_CFA_Bayer(RGB.shape[0:2])
    mask = np.concatenate(
        (R_m[..., np.newaxis], G_m[..., np.newaxis], B_m[..., np.newaxis]), axis=-1
    )
    mosaic = np.multiply(mask, RGB)  # mask*RGB
    CFA = mosaic.sum(2).astype(np.uint8)

    CFA4 = np.zeros((RGB.shape[0] // 2, RGB.shape[1] // 2, 4), dtype=np.uint8)
    CFA4[:, :, 0] = CFA[0::2, 0::2]
    CFA4[:, :, 1] = CFA[0::2, 1::2]
    CFA4[:, :, 2] = CFA[1::2, 0::2]
    CFA4[:, :, 3] = CFA[1::2, 1::2]

    rgb = cfa4_to_rgb(CFA4)
    rgb = uint2single(rgb)
    return rgb


def simulate_barrel_distortion(image, k1=0.02, k2=0.01):
    height, width = image.shape[:2]
    mapx, mapy = np.meshgrid(np.arange(width), np.arange(height))
    mapx = 2 * mapx / (width - 1) - 1
    mapy = 2 * mapy / (height - 1) - 1
    r = np.sqrt(mapx**2 + mapy**2)
    mapx = mapx * (1 + k1 * r**2 + k2 * r**4)
    mapy = mapy * (1 + k1 * r**2 + k2 * r**4)
    mapx = (mapx + 1) * (width - 1) / 2
    mapy = (mapy + 1) * (height - 1) / 2
    distorted_image = cv2.remap(image, mapx.astype(np.float32), mapy.astype(np.float32), cv2.INTER_LINEAR)
    return distorted_image


def simulate_pincushion_distortion(image, k1=-0.02, k2=-0.01):
    height, width = image.shape[:2]
    mapx, mapy = np.meshgrid(np.arange(width), np.arange(height))
    mapx = 2 * mapx / (width - 1) - 1
    mapy = 2 * mapy / (height - 1) - 1
    r = np.sqrt(mapx**2 + mapy**2)
    mapx = mapx * (1 + k1 * r**2 + k2 * r**4)
    mapy = mapy * (1 + k1 * r**2 + k2 * r**4)
    mapx = (mapx + 1) * (width - 1) / 2
    mapy = (mapy + 1) * (height - 1) / 2
    distorted_image = cv2.remap(image, mapx.astype(np.float32), mapy.astype(np.float32), cv2.INTER_LINEAR)
    return distorted_image


def rgb2gray(rgb):
    return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])


def spatter(x, severity=1):
    c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
         (0.65, 0.3, 3, 0.68, 0.6, 0),
         (0.65, 0.3, 2, 0.68, 0.5, 0),
         (0.65, 0.3, 1, 0.65, 1.5, 1),
         (0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
    x_PIL = x
    x = np.array(x, dtype=np.float32) / 255.

    liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])

    liquid_layer = gaussian(liquid_layer, sigma=c[2])
    liquid_layer[liquid_layer < c[3]] = 0
    if c[5] == 0:
        liquid_layer = (liquid_layer * 255).astype(np.uint8)
        dist = 255 - cv2.Canny(liquid_layer, 50, 150)
        dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
        _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
        dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
        dist = cv2.equalizeHist(dist)
        ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
        dist = cv2.filter2D(dist, cv2.CV_8U, ker)
        dist = cv2.blur(dist, (3, 3)).astype(np.float32)

        m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
        m /= np.max(m, axis=(0, 1))
        m *= c[4]
        # water is pale turqouise
        color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1]),
                                238 / 255. * np.ones_like(m[..., :1])), axis=2)

        color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)

        if len(x.shape) < 3 or x.shape[2] < 3:
            add_spatter_color = cv2.cvtColor(np.clip(m * color, 0, 1),
                                             cv2.COLOR_BGRA2BGR)
            add_spatter_gray = rgb2gray(add_spatter_color)

            return (np.clip(x + add_spatter_gray, 0, 1) * 255).astype(np.uint8)

        else:

            x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)

            return (cv2.cvtColor(np.clip(x + m * color, 0, 1),
                                cv2.COLOR_BGRA2BGR) * 255).astype(np.uint8)
    else:
        m = np.where(liquid_layer > c[3], 1, 0)
        m = gaussian(m.astype(np.float32), sigma=c[4])
        m[m < 0.8] = 0

        x_rgb = np.array(x_PIL)

        # mud brown
        color = np.concatenate((63 / 255. * np.ones_like(x_rgb[..., :1]),
                                42 / 255. * np.ones_like(x_rgb[..., :1]),
                                20 / 255. * np.ones_like(x_rgb[..., :1])),
                               axis=2)
        color *= m[..., np.newaxis]
        if len(x.shape) < 3 or x.shape[2] < 3:
            x *= (1 - m)
            return (np.clip(x + rgb2gray(color), 0, 1) * 255).astype(np.uint8)

        else:
            x *= (1 - m[..., np.newaxis])
            return (np.clip(x + color, 0, 1) * 255).astype(np.uint8)


# mod of https://gist.github.com/erniejunior/601cdf56d2b424757de5
def elastic_transform(image, severity=3):
    image = np.array(image, dtype=np.float32) / 255.
    shape = image.shape
    shape_size = shape[:2]

    sigma = np.array(shape_size) * 0.01
    alpha = [250 * 0.05, 250 * 0.065, 250 * 0.085, 250 * 0.1, 250 * 0.12][
        severity - 1]
    max_dx = shape[0] * 0.005
    max_dy = shape[0] * 0.005

    dx = (gaussian(np.random.uniform(-max_dx, max_dx, size=shape[:2]),
                   sigma, mode='reflect', truncate=3) * alpha).astype(
        np.float32)
    dy = (gaussian(np.random.uniform(-max_dy, max_dy, size=shape[:2]),
                   sigma, mode='reflect', truncate=3) * alpha).astype(
        np.float32)

    if len(image.shape) < 3 or image.shape[2] < 3:
        x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
        indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1))
    else:
        dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]
        x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]),
                              np.arange(shape[2]))
        indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx,
                                                          (-1, 1)), np.reshape(
            z, (-1, 1))
    return np.clip(
        map_coordinates(image, indices, order=1, mode='reflect').reshape(
            shape), 0, 1) * 255


def frost(x, severity=2):
    c = [(1, 0.4),
         (0.8, 0.6),
         (0.7, 0.7),
         (0.65, 0.7),
         (0.6, 0.75)][severity - 1]

    idx = np.random.randint(5)
    filename = [os.path.join("degradation_toolkit/frost", 'frost1.png'),
                os.path.join("degradation_toolkit/frost", 'frost2.png'),
                os.path.join("degradation_toolkit/frost", 'frost3.png'),
                os.path.join("degradation_toolkit/frost", 'frost4.jpg'),
                os.path.join("degradation_toolkit/frost", 'frost5.jpg'),
                os.path.join("degradation_toolkit/frost", 'frost6.jpg')][idx]
    frost = Image.open(filename)
    frost = frost.convert("RGB")
    frost = np.array(frost)
    # frost = cv2.imread(filename)
    frost = uint2single(frost)
    frost_shape = frost.shape
    x_shape = np.array(x).shape

    # resize the frost image so it fits to the image dimensions
    scaling_factor = 1
    if frost_shape[0] >= x_shape[0] and frost_shape[1] >= x_shape[1]:
        scaling_factor = 1
    elif frost_shape[0] < x_shape[0] and frost_shape[1] >= x_shape[1]:
        scaling_factor = x_shape[0] / frost_shape[0]
    elif frost_shape[0] >= x_shape[0] and frost_shape[1] < x_shape[1]:
        scaling_factor = x_shape[1] / frost_shape[1]
    elif frost_shape[0] < x_shape[0] and frost_shape[1] < x_shape[
        1]:  # If both dims are too small, pick the bigger scaling factor
        scaling_factor_0 = x_shape[0] / frost_shape[0]
        scaling_factor_1 = x_shape[1] / frost_shape[1]
        scaling_factor = np.maximum(scaling_factor_0, scaling_factor_1)

    scaling_factor *= 1.1
    new_shape = (int(np.ceil(frost_shape[1] * scaling_factor)),
                 int(np.ceil(frost_shape[0] * scaling_factor)))
    frost_rescaled = cv2.resize(frost, dsize=new_shape,
                                interpolation=cv2.INTER_CUBIC)

    # randomly crop
    x_start, y_start = np.random.randint(0, frost_rescaled.shape[0] - x_shape[
        0]), np.random.randint(0, frost_rescaled.shape[1] - x_shape[1])

    if len(x_shape) < 3 or x_shape[2] < 3:
        frost_rescaled = frost_rescaled[x_start:x_start + x_shape[0],
                         y_start:y_start + x_shape[1]]
        frost_rescaled = rgb2gray(frost_rescaled)
    else:
        frost_rescaled = frost_rescaled[x_start:x_start + x_shape[0],
                         y_start:y_start + x_shape[1]][..., [2, 1, 0]]
    return c[0] * np.array(x) + c[1] * frost_rescaled