import os import cv2 import numpy as np import torch import gradio as gr import spaces # Required for @spaces.GPU from PIL import Image, ImageOps from transformers import AutoModelForImageSegmentation from torchvision import transforms torch.set_float32_matmul_precision('high') torch.jit.script = lambda f: f device = "cuda" if torch.cuda.is_available() else "cpu" def refine_foreground(image, mask, r=90): if mask.size != image.size: mask = mask.resize(image.size) image = np.array(image) / 255.0 mask = np.array(mask) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) return image_masked def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): alpha = alpha[:, :, None] F, blur_B = FB_blur_fusion_foreground_estimator( image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FA = cv2.blur(F * alpha, (r, r)) blurred_F = blurred_FA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) F = blurred_F + alpha * \ (image - alpha * blurred_F - (1 - alpha) * blurred_B) F = np.clip(F, 0, 1) return F, blurred_B class ImagePreprocessor(): def __init__(self, resolution=(1024, 1024)) -> None: self.transform_image = transforms.Compose([ transforms.Resize(resolution), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image # Load the model birefnet = AutoModelForImageSegmentation.from_pretrained( 'zhengpeng7/BiRefNet-matting', trust_remote_code=True) birefnet.to(device) birefnet.eval() def remove_background_wrapper(image): if image is None: raise gr.Error("Please upload an image.") image_ori = Image.fromarray(image).convert('RGB') # Call the processing function foreground, background, pred_pil, reverse_mask = remove_background(image_ori) return foreground, background, pred_pil, reverse_mask @spaces.GPU # Decorate the processing function def remove_background(image_ori): original_size = image_ori.size # Preprocess the image image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) image_proc = image_preprocessor.proc(image_ori) image_proc = image_proc.unsqueeze(0) # Prediction with torch.no_grad(): preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() pred = preds[0].squeeze() # Process Results pred_pil = transforms.ToPILImage()(pred) pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size # Create reverse mask (background mask) reverse_mask = ImageOps.invert(pred_pil) # Create foreground image (object with transparent background) foreground = image_ori.copy() foreground.putalpha(pred_pil) # Create background image background = image_ori.copy() background.putalpha(reverse_mask) torch.cuda.empty_cache() # Return images in the specified order return foreground, background, pred_pil, reverse_mask iface = gr.Interface( fn=remove_background_wrapper, inputs=gr.Image(type="numpy"), outputs=[ gr.Image(type="pil", label="Foreground"), gr.Image(type="pil", label="Background"), gr.Image(type="pil", label="Foreground Mask"), gr.Image(type="pil", label="Background Mask") ], allow_flagging="never" ) if __name__ == "__main__": iface.launch(debug=True)