Spaces:
Runtime error
Runtime error
File size: 13,788 Bytes
81b1a0e 509862d 6bafd2d 6284dc0 509862d e797135 509862d 6bafd2d 63d9326 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 509862d 53ff575 81b1a0e 509862d d967d62 509862d 8da09d2 132dae6 1ba1ac4 132dae6 1ba1ac4 6b21c48 1ba1ac4 1f5deb3 1ba1ac4 5a7c5d5 6fc9c48 5a7c5d5 6fc9c48 1ba1ac4 509862d 6bafd2d 132dae6 509862d 132dae6 3847cbf 509862d 132dae6 3847cbf 509862d 3847cbf 509862d 6fc9c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import gradio as gr
import torch
import spaces
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
import moviepy.editor as mp
from PIL import Image
import numpy as np
import tempfile
import time
import os
import shutil
import ffmpeg
from concurrent.futures import ThreadPoolExecutor
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts
# Custom Theme Definition
class WhiteTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.orange,
font: fonts.Font | str | tuple[fonts.Font | str, ...] = (
fonts.GoogleFont("Inter"),
"ui-sans-serif",
"system-ui",
"sans-serif",
),
font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = (
fonts.GoogleFont("Inter"),
"ui-monospace",
"system-ui",
"monospace",
)
):
super().__init__(
primary_hue=primary_hue,
font=font,
font_mono=font_mono,
)
self.set(
# Light mode specific colors
background_fill_primary="*primary_50",
background_fill_secondary="white",
border_color_primary="*primary_300",
# General colors that should stay constant
body_background_fill="white",
body_background_fill_dark="white",
block_background_fill="white",
block_background_fill_dark="white",
panel_background_fill="white",
panel_background_fill_dark="white",
body_text_color="black",
body_text_color_dark="black",
block_label_text_color="black",
block_label_text_color_dark="black",
block_border_color="white",
panel_border_color="white",
input_border_color="lightgray",
input_background_fill="white",
input_background_fill_dark="white",
shadow_drop="none"
)
# Set precision and device
torch.set_float32_matmul_precision("medium")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models
print("Loading models...")
birefnet = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
birefnet.to(device)
birefnet_lite = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
birefnet_lite.to(device)
print("Models loaded successfully!")
# Image transformation
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
])
def process_frame(frame, fast_mode=True):
"""
Process a single frame through the BiRefNet model.
Maintains original resolution throughout processing.
Returns a PIL Image with alpha channel.
"""
try:
# Preserve original resolution for final output
image_ori = Image.fromarray(frame).convert('RGB')
original_size = image_ori.size
# Transform for model input while maintaining aspect ratio
input_images = transform_image(image_ori).unsqueeze(0).to(device)
# Select model based on mode
model = birefnet_lite if fast_mode else birefnet
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Resize mask back to original resolution
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC)
# Create foreground with transparency
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
return foreground
except Exception as e:
print(f"Error processing frame: {e}")
return None
@spaces.GPU(duration=300) # 5-minute duration for processing
def process_video(video_path, fps=0, fast_mode=True, max_workers=6):
"""
Process video to create transparent MOV file using ProRes 4444.
Maintains original resolution and framerate if fps=0.
"""
temp_dir = None
try:
start_time = time.time()
video = mp.VideoFileClip(video_path)
# Use original video FPS if not specified
if fps == 0:
fps = video.fps
frames = list(video.iter_frames(fps=fps))
total_frames = len(frames)
print(f"Processing {total_frames} frames at {fps} FPS...")
# Create temporary directory for PNG sequence
temp_dir = tempfile.mkdtemp()
png_dir = os.path.join(temp_dir, "frames")
os.makedirs(png_dir, exist_ok=True)
# Prepare to collect processed frames for live preview
processed_frames = []
# Process frames with parallel execution
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(process_frame, frame, fast_mode) for frame in frames]
for i, future in enumerate(futures):
try:
result = future.result()
if result:
# Save frame as PNG with transparency
frame_path = os.path.join(png_dir, f"frame_{i:06d}.png")
result.save(frame_path, "PNG")
# Collect processed frames for live preview
processed_frames.append(np.array(result))
# Update live preview
elapsed_time = time.time() - start_time
yield processed_frames[-1], None, None, None, f"Processing frame {i+1}/{total_frames}... Elapsed time: {elapsed_time:.2f} seconds"
if (i + 1) % 10 == 0:
print(f"Processed {i+1}/{total_frames} frames")
except Exception as e:
print(f"Error processing frame {i+1}: {e}")
print("Creating output files...")
# Create permanent output directory
output_dir = os.path.join(os.path.dirname(video_path), "output")
os.makedirs(output_dir, exist_ok=True)
# Create ZIP file of PNG sequence
zip_filename = f"frames_{int(time.time())}.zip"
zip_path = os.path.join(output_dir, zip_filename)
shutil.make_archive(zip_path[:-4], 'zip', png_dir)
# Create MOV file with ProRes 4444
print("Creating ProRes 4444 MOV...")
mov_filename = f"video_{int(time.time())}.mov"
mov_path = os.path.join(output_dir, mov_filename)
try:
# FFmpeg settings for high-quality ProRes 4444
stream = ffmpeg.input(
os.path.join(png_dir, 'frame_%06d.png'),
pattern_type='sequence',
framerate=fps
)
# ProRes 4444 settings for maximum quality with alpha
stream = ffmpeg.output(
stream,
mov_path,
vcodec='prores_ks', # ProRes codec
pix_fmt='yuva444p10le', # 10-bit 4:4:4:4 pixel format with alpha
profile='4444', # ProRes 4444 profile for alpha support
alpha_bits=16, # Maximum alpha bit depth
qscale=1, # Highest quality setting
vendor='ap10', # Standard ProRes vendor tag
bits_per_mb=8000, # High bitrate for quality
threads=max_workers # Parallel processing
)
# Run FFmpeg command
ffmpeg.run(stream, overwrite_output=True, capture_stdout=True, capture_stderr=True)
print("MOV video created successfully!")
except ffmpeg.Error as e:
print(f"Error creating MOV video: {e.stderr.decode() if e.stderr else str(e)}")
mov_path = None
print("Processing complete!")
# Yield the final outputs
yield None, zip_path, mov_path, None, f"Processing complete! Total time: {time.time() - start_time:.2f} seconds"
except Exception as e:
print(f"Error: {e}")
yield None, None, None, None, f"Error processing video: {e}"
finally:
# Clean up temporary directory
if temp_dir and os.path.exists(temp_dir):
try:
shutil.rmtree(temp_dir)
except Exception as e:
print(f"Error cleaning up temp directory: {e}")
@spaces.GPU(duration=300) # Match process_video duration
def process_wrapper(video, fps=0, fast_mode=True, max_workers=6):
if video is None:
raise gr.Error("Please upload a video.")
try:
for outputs in process_video(video, fps, fast_mode, max_workers):
yield outputs
except Exception as e:
raise gr.Error(f"Error processing video: {str(e)}")
# Custom CSS for styling
custom_css = """
.title-container {
text-align: center;
padding: 10px 0;
}
#title {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
font-size: 36px;
font-weight: bold;
color: #000000;
padding: 10px;
border-radius: 10px;
display: inline-block;
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
}
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
#submit-button {
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
border-radius: 12px;
color: black;
}
/* Force light mode styles */
:root, :root[data-theme='light'], :root[data-theme='dark'] {
--body-background-fill: white !important;
--background-fill-primary: white !important;
--background-fill-secondary: white !important;
--block-background-fill: white !important;
--panel-background-fill: white !important;
--body-text-color: black !important;
--block-label-text-color: black !important;
}
/* Additional overrides for dark mode */
@media (prefers-color-scheme: dark) {
:root {
color-scheme: light;
}
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
gr.HTML('''
<div class="title-container">
<div id="title">
<span>{.</span><span id="typed-text"></span><span>}</span>
</div>
</div>
<script>
(function() {
const text = "video";
const typedTextSpan = document.getElementById("typed-text");
let charIndex = 0;
function type() {
if (charIndex < text.length) {
typedTextSpan.textContent += text[charIndex];
charIndex++;
setTimeout(type, 150);
}
}
setTimeout(type, 150);
})();
</script>
''')
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Upload Video",
interactive=True,
show_label=True,
height=360,
width=640
)
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
)
fast_mode_checkbox = gr.Checkbox(
label="Fast Mode (Use BiRefNet_lite)",
value=True
)
max_workers_slider = gr.Slider(
minimum=1,
maximum=32,
step=1,
value=6,
label="Max Workers",
info="Determines how many frames to process in parallel"
)
btn = gr.Button("Process Video", elem_id="submit-button")
with gr.Column():
preview_image = gr.Image(label="Live Preview", show_label=True)
output_foreground_zip = gr.File(label="Download PNG Sequence (ZIP)")
output_foreground_video = gr.File(label="Download Video (ProRes 4444 MOV with transparency)")
output_background = gr.Video(label="Background (Coming Soon)")
time_textbox = gr.Textbox(label="Status", interactive=False)
gr.Markdown("""
### Output Information
- MOV file uses ProRes 4444 codec for professional-grade alpha channel
- Original resolution and framerate are maintained
- PNG sequence provided for maximum compatibility
""")
btn.click(
fn=process_wrapper,
inputs=[video_input, fps_slider, fast_mode_checkbox, max_workers_slider],
outputs=[preview_image, output_foreground_zip, output_foreground_video,
output_background, time_textbox]
)
if __name__ == "__main__":
demo.launch(debug=True) |