geyik2 commited on
Commit
526ed41
·
verified ·
1 Parent(s): b50ff7d

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +16 -0
  2. app.py +308 -0
  3. requirements.txt +32 -0
README.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: FLUX TRELLIS
3
+ emoji: 🏢
4
+ colorFrom: indigo
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 4.44.1
8
+ app_file: app.py
9
+ pinned: true
10
+ license: mit
11
+ short_description: 3D Generation from text prompts
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
15
+
16
+ Paper: https://huggingface.co/papers/2412.01506
app.py ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+ import os
5
+ import shutil
6
+ import random
7
+ import uuid
8
+ from datetime import datetime
9
+ from diffusers import DiffusionPipeline
10
+
11
+ os.environ['SPCONV_ALGO'] = 'native'
12
+ from typing import *
13
+ import torch
14
+ import numpy as np
15
+ import imageio
16
+ from easydict import EasyDict as edict
17
+ from PIL import Image
18
+ from trellis.pipelines import TrellisImageTo3DPipeline
19
+ from trellis.representations import Gaussian, MeshExtractResult
20
+ from trellis.utils import render_utils, postprocessing_utils
21
+
22
+ NUM_INFERENCE_STEPS = 8
23
+
24
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
25
+ # Constants
26
+ MAX_SEED = np.iinfo(np.int32).max
27
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
28
+ os.makedirs(TMP_DIR, exist_ok=True)
29
+
30
+ # Create permanent storage directory for Flux generated images
31
+ SAVE_DIR = "saved_images"
32
+ if not os.path.exists(SAVE_DIR):
33
+ os.makedirs(SAVE_DIR, exist_ok=True)
34
+
35
+ def start_session(req: gr.Request):
36
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
37
+ os.makedirs(user_dir, exist_ok=True)
38
+
39
+ def end_session(req: gr.Request):
40
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
41
+ shutil.rmtree(user_dir)
42
+
43
+ def preprocess_image(image: Image.Image) -> Image.Image:
44
+ processed_image = trellis_pipeline.preprocess_image(image)
45
+ return processed_image
46
+
47
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
48
+ return {
49
+ 'gaussian': {
50
+ **gs.init_params,
51
+ '_xyz': gs._xyz.cpu().numpy(),
52
+ '_features_dc': gs._features_dc.cpu().numpy(),
53
+ '_scaling': gs._scaling.cpu().numpy(),
54
+ '_rotation': gs._rotation.cpu().numpy(),
55
+ '_opacity': gs._opacity.cpu().numpy(),
56
+ },
57
+ 'mesh': {
58
+ 'vertices': mesh.vertices.cpu().numpy(),
59
+ 'faces': mesh.faces.cpu().numpy(),
60
+ },
61
+ }
62
+
63
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
64
+ gs = Gaussian(
65
+ aabb=state['gaussian']['aabb'],
66
+ sh_degree=state['gaussian']['sh_degree'],
67
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
68
+ scaling_bias=state['gaussian']['scaling_bias'],
69
+ opacity_bias=state['gaussian']['opacity_bias'],
70
+ scaling_activation=state['gaussian']['scaling_activation'],
71
+ )
72
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
73
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
74
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
75
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
76
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
77
+
78
+ mesh = edict(
79
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
80
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
81
+ )
82
+
83
+ return gs, mesh
84
+
85
+ def get_seed(randomize_seed: bool, seed: int) -> int:
86
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
87
+
88
+ @spaces.GPU
89
+ def generate_flux_image(
90
+ prompt: str,
91
+ seed: int,
92
+ randomize_seed: bool,
93
+ width: int,
94
+ height: int,
95
+ guidance_scale: float,
96
+ progress: gr.Progress = gr.Progress(track_tqdm=True),
97
+ ) -> Image.Image:
98
+ """Generate image using Flux pipeline"""
99
+ if randomize_seed:
100
+ seed = random.randint(0, MAX_SEED)
101
+ generator = torch.Generator(device=device).manual_seed(seed)
102
+ prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
103
+ image = flux_pipeline(
104
+ prompt=prompt,
105
+ guidance_scale=guidance_scale,
106
+ num_inference_steps=NUM_INFERENCE_STEPS,
107
+ width=width,
108
+ height=height,
109
+ generator=generator,
110
+ ).images[0]
111
+
112
+ # Save the generated image
113
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
114
+ unique_id = str(uuid.uuid4())[:8]
115
+ filename = f"{timestamp}_{unique_id}.png"
116
+ filepath = os.path.join(SAVE_DIR, filename)
117
+ image.save(filepath)
118
+
119
+ return image
120
+
121
+ @spaces.GPU
122
+ def image_to_3d(
123
+ image: Image.Image,
124
+ seed: int,
125
+ ss_guidance_strength: float,
126
+ ss_sampling_steps: int,
127
+ slat_guidance_strength: float,
128
+ slat_sampling_steps: int,
129
+ req: gr.Request,
130
+ ) -> Tuple[dict, str]:
131
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
132
+ outputs = trellis_pipeline.run(
133
+ image,
134
+ seed=seed,
135
+ formats=["gaussian", "mesh"],
136
+ preprocess_image=False,
137
+ sparse_structure_sampler_params={
138
+ "steps": ss_sampling_steps,
139
+ "cfg_strength": ss_guidance_strength,
140
+ },
141
+ slat_sampler_params={
142
+ "steps": slat_sampling_steps,
143
+ "cfg_strength": slat_guidance_strength,
144
+ },
145
+ )
146
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
147
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
148
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
149
+ video_path = os.path.join(user_dir, 'sample.mp4')
150
+ imageio.mimsave(video_path, video, fps=15)
151
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
152
+ torch.cuda.empty_cache()
153
+ return state, video_path
154
+
155
+ @spaces.GPU(duration=90)
156
+ def extract_glb(
157
+ state: dict,
158
+ mesh_simplify: float,
159
+ texture_size: int,
160
+ req: gr.Request,
161
+ ) -> Tuple[str, str]:
162
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
163
+ gs, mesh = unpack_state(state)
164
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
165
+ glb_path = os.path.join(user_dir, 'sample.glb')
166
+ glb.export(glb_path)
167
+ torch.cuda.empty_cache()
168
+ return glb_path, glb_path
169
+
170
+ @spaces.GPU
171
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
172
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
173
+ gs, _ = unpack_state(state)
174
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
175
+ gs.save_ply(gaussian_path)
176
+ torch.cuda.empty_cache()
177
+ return gaussian_path, gaussian_path
178
+
179
+ # Gradio Interface
180
+ with gr.Blocks() as demo:
181
+ gr.Markdown("""
182
+ ## Game Asset Generation to 3D with FLUX and TRELLIS
183
+ * Enter a prompt to generate a game asset image, then convert it to 3D
184
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
185
+ * [TRELLIS Model](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) [Trellis Github](https://github.com/microsoft/TRELLIS) [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
186
+ * [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2) [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) [safetensors to GGUF for Flux](https://github.com/ruSauron/to-gguf-bat) [Thanks to John6666](https://huggingface.co/John6666)
187
+ """)
188
+
189
+ with gr.Row():
190
+ with gr.Column():
191
+ # Flux image generation inputs
192
+ prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
193
+
194
+ with gr.Accordion("Generation Settings", open=False):
195
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
196
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
197
+ with gr.Row():
198
+ width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
199
+ height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
200
+ with gr.Row():
201
+ guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
202
+ # num_inference_steps = gr.Slider(1, 50, label="Steps", value=8, step=1)
203
+
204
+ with gr.Accordion("3D Generation Settings", open=False):
205
+ gr.Markdown("Stage 1: Sparse Structure Generation")
206
+ with gr.Row():
207
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
208
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
209
+ gr.Markdown("Stage 2: Structured Latent Generation")
210
+ with gr.Row():
211
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
212
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
213
+
214
+ generate_btn = gr.Button("Generate")
215
+
216
+ with gr.Accordion("GLB Extraction Settings", open=False):
217
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
218
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
219
+
220
+ with gr.Row():
221
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
222
+ extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
223
+
224
+ with gr.Column():
225
+ generated_image = gr.Image(label="Generated Asset", type="pil")
226
+
227
+ with gr.Column():
228
+
229
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
230
+ model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
231
+
232
+ with gr.Row():
233
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
234
+ download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
235
+
236
+ output_buf = gr.State()
237
+
238
+ # Event handlers
239
+ demo.load(start_session)
240
+ demo.unload(end_session)
241
+
242
+ generate_btn.click(
243
+ generate_flux_image,
244
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
245
+ outputs=[generated_image],
246
+ ).then(
247
+ image_to_3d,
248
+ inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
249
+ outputs=[output_buf, video_output],
250
+ ).then(
251
+ lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
252
+ outputs=[extract_glb_btn, extract_gs_btn],
253
+ )
254
+
255
+ extract_glb_btn.click(
256
+ extract_glb,
257
+ inputs=[output_buf, mesh_simplify, texture_size],
258
+ outputs=[model_output, download_glb],
259
+ ).then(
260
+ lambda: gr.Button(interactive=True),
261
+ outputs=[download_glb],
262
+ )
263
+
264
+ extract_gs_btn.click(
265
+ extract_gaussian,
266
+ inputs=[output_buf],
267
+ outputs=[model_output, download_gs],
268
+ ).then(
269
+ lambda: gr.Button(interactive=True),
270
+ outputs=[download_gs],
271
+ )
272
+
273
+ model_output.clear(
274
+ lambda: gr.Button(interactive=False),
275
+ outputs=[download_glb],
276
+ )
277
+
278
+ # Initialize both pipelines
279
+ if __name__ == "__main__":
280
+ from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
281
+ from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
282
+
283
+ # Initialize Flux pipeline
284
+ device = "cuda" if torch.cuda.is_available() else "cpu"
285
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
286
+
287
+ dtype = torch.bfloat16
288
+ file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
289
+ file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
290
+ single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
291
+ quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
292
+ text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
293
+ if ".gguf" in file_url:
294
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
295
+ else:
296
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
297
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
298
+ flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
299
+ flux_pipeline.to("cuda")
300
+ # Initialize Trellis pipeline
301
+ trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
302
+ trellis_pipeline.cuda()
303
+ try:
304
+ trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
305
+ except:
306
+ pass
307
+
308
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu121
2
+
3
+ torch==2.4.0
4
+ torchvision==0.19.0
5
+ pillow==10.4.0
6
+ imageio==2.36.1
7
+ imageio-ffmpeg==0.5.1
8
+ tqdm==4.67.1
9
+ easydict==1.13
10
+ opencv-python-headless==4.10.0.84
11
+ scipy==1.14.1
12
+ rembg==2.0.60
13
+ onnxruntime==1.20.1
14
+ trimesh==4.5.3
15
+ xatlas==0.0.9
16
+ pyvista==0.44.2
17
+ pymeshfix==0.17.0
18
+ igraph==0.11.8
19
+ git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
20
+ xformers==0.0.27.post2
21
+ spconv-cu120==2.3.6
22
+ transformers==4.46.3
23
+ gradio_litmodel3d==0.0.1
24
+ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
25
+ https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
26
+ https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
27
+ accelerate
28
+ diffusers
29
+ peft
30
+ sentencepiece
31
+ bitsandbytes
32
+ gguf