geyik2 commited on
Commit
3fe0db6
·
verified ·
1 Parent(s): 4198907

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -329
app.py DELETED
@@ -1,329 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from gradio_litmodel3d import LitModel3D
4
- import os
5
- import shutil
6
- import random
7
- import uuid
8
- from datetime import datetime
9
- from diffusers import DiffusionPipeline
10
-
11
- os.environ['SPCONV_ALGO'] = 'native'
12
- from typing import *
13
- import torch
14
- import numpy as np
15
- import imageio
16
- from easydict import EasyDict as edict
17
- from PIL import Image
18
- from trellis.pipelines import TrellisImageTo3DPipeline
19
- from trellis.representations import Gaussian, MeshExtractResult
20
- from trellis.utils import render_utils, postprocessing_utils
21
-
22
- NUM_INFERENCE_STEPS = 8
23
-
24
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
25
- # Constants
26
- MAX_SEED = np.iinfo(np.int32).max
27
- TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
28
- os.makedirs(TMP_DIR, exist_ok=True)
29
-
30
- # Create permanent storage directory for Flux generated images
31
- SAVE_DIR = "saved_images"
32
- if not os.path.exists(SAVE_DIR):
33
- os.makedirs(SAVE_DIR, exist_ok=True)
34
-
35
- # Initialize device
36
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
37
-
38
- # Initialize Flux pipeline
39
- flux_pipeline = DiffusionPipeline.from_pretrained(
40
- "black-forest-labs/FLUX.1-dev",
41
- torch_dtype=torch.float16,
42
- variant="fp16",
43
- use_safetensors=True,
44
- local_files_only=False
45
- ).to(device)
46
-
47
- # Initialize TRELLIS pipeline
48
- trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
49
- "JeffreyXiang/TRELLIS-image-large",
50
- torch_dtype=torch.float16,
51
- variant="fp16",
52
- use_safetensors=True,
53
- local_files_only=False
54
- ).to(device)
55
-
56
- def start_session(req: gr.Request):
57
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
58
- os.makedirs(user_dir, exist_ok=True)
59
-
60
- def end_session(req: gr.Request):
61
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
62
- shutil.rmtree(user_dir)
63
-
64
- def preprocess_image(image: Image.Image) -> Image.Image:
65
- processed_image = trellis_pipeline.preprocess_image(image)
66
- return processed_image
67
-
68
- def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
69
- return {
70
- 'gaussian': {
71
- **gs.init_params,
72
- '_xyz': gs._xyz.cpu().numpy(),
73
- '_features_dc': gs._features_dc.cpu().numpy(),
74
- '_scaling': gs._scaling.cpu().numpy(),
75
- '_rotation': gs._rotation.cpu().numpy(),
76
- '_opacity': gs._opacity.cpu().numpy(),
77
- },
78
- 'mesh': {
79
- 'vertices': mesh.vertices.cpu().numpy(),
80
- 'faces': mesh.faces.cpu().numpy(),
81
- },
82
- }
83
-
84
- def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
85
- gs = Gaussian(
86
- aabb=state['gaussian']['aabb'],
87
- sh_degree=state['gaussian']['sh_degree'],
88
- mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
89
- scaling_bias=state['gaussian']['scaling_bias'],
90
- opacity_bias=state['gaussian']['opacity_bias'],
91
- scaling_activation=state['gaussian']['scaling_activation'],
92
- )
93
- gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
94
- gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
95
- gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
96
- gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
97
- gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
98
-
99
- mesh = edict(
100
- vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
101
- faces=torch.tensor(state['mesh']['faces'], device='cuda'),
102
- )
103
-
104
- return gs, mesh
105
-
106
- def get_seed(randomize_seed: bool, seed: int) -> int:
107
- return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
-
109
- @spaces.GPU
110
- def generate_flux_image(
111
- prompt: str,
112
- seed: int,
113
- randomize_seed: bool,
114
- width: int,
115
- height: int,
116
- guidance_scale: float,
117
- progress: gr.Progress = gr.Progress(track_tqdm=True),
118
- ) -> Image.Image:
119
- """Generate image using Flux pipeline"""
120
- if randomize_seed:
121
- seed = random.randint(0, MAX_SEED)
122
- generator = torch.Generator(device=device).manual_seed(seed)
123
- prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
124
- image = flux_pipeline(
125
- prompt=prompt,
126
- guidance_scale=guidance_scale,
127
- num_inference_steps=NUM_INFERENCE_STEPS,
128
- width=width,
129
- height=height,
130
- generator=generator,
131
- ).images[0]
132
-
133
- # Save the generated image
134
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
135
- unique_id = str(uuid.uuid4())[:8]
136
- filename = f"{timestamp}_{unique_id}.png"
137
- filepath = os.path.join(SAVE_DIR, filename)
138
- image.save(filepath)
139
-
140
- return image
141
-
142
- @spaces.GPU
143
- def image_to_3d(
144
- image: Image.Image,
145
- seed: int,
146
- ss_guidance_strength: float,
147
- ss_sampling_steps: int,
148
- slat_guidance_strength: float,
149
- slat_sampling_steps: int,
150
- req: gr.Request,
151
- ) -> Tuple[dict, str]:
152
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
153
- outputs = trellis_pipeline.run(
154
- image,
155
- seed=seed,
156
- formats=["gaussian", "mesh"],
157
- preprocess_image=False,
158
- sparse_structure_sampler_params={
159
- "steps": ss_sampling_steps,
160
- "cfg_strength": ss_guidance_strength,
161
- },
162
- slat_sampler_params={
163
- "steps": slat_sampling_steps,
164
- "cfg_strength": slat_guidance_strength,
165
- },
166
- )
167
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
168
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
169
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
170
- video_path = os.path.join(user_dir, 'sample.mp4')
171
- imageio.mimsave(video_path, video, fps=15)
172
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
173
- torch.cuda.empty_cache()
174
- return state, video_path
175
-
176
- @spaces.GPU(duration=90)
177
- def extract_glb(
178
- state: dict,
179
- mesh_simplify: float,
180
- texture_size: int,
181
- req: gr.Request,
182
- ) -> Tuple[str, str]:
183
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
184
- gs, mesh = unpack_state(state)
185
- glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
186
- glb_path = os.path.join(user_dir, 'sample.glb')
187
- glb.export(glb_path)
188
- torch.cuda.empty_cache()
189
- return glb_path, glb_path
190
-
191
- @spaces.GPU
192
- def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
193
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
194
- gs, _ = unpack_state(state)
195
- gaussian_path = os.path.join(user_dir, 'sample.ply')
196
- gs.save_ply(gaussian_path)
197
- torch.cuda.empty_cache()
198
- return gaussian_path, gaussian_path
199
-
200
- # Gradio Interface
201
- with gr.Blocks() as demo:
202
- gr.Markdown("""
203
- ## Game Asset Generation to 3D with FLUX and TRELLIS
204
- * Enter a prompt to generate a game asset image, then convert it to 3D
205
- * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
206
- * [TRELLIS Model](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) [Trellis Github](https://github.com/microsoft/TRELLIS) [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
207
- * [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2) [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) [safetensors to GGUF for Flux](https://github.com/ruSauron/to-gguf-bat) [Thanks to John6666](https://huggingface.co/John6666)
208
- """)
209
-
210
- with gr.Row():
211
- with gr.Column():
212
- # Flux image generation inputs
213
- prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
214
-
215
- with gr.Accordion("Generation Settings", open=False):
216
- seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
217
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
218
- with gr.Row():
219
- width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
220
- height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
221
- with gr.Row():
222
- guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
223
- # num_inference_steps = gr.Slider(1, 50, label="Steps", value=8, step=1)
224
-
225
- with gr.Accordion("3D Generation Settings", open=False):
226
- gr.Markdown("Stage 1: Sparse Structure Generation")
227
- with gr.Row():
228
- ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
229
- ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
230
- gr.Markdown("Stage 2: Structured Latent Generation")
231
- with gr.Row():
232
- slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
233
- slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
234
-
235
- generate_btn = gr.Button("Generate")
236
-
237
- with gr.Accordion("GLB Extraction Settings", open=False):
238
- mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
239
- texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
240
-
241
- with gr.Row():
242
- extract_glb_btn = gr.Button("Extract GLB", interactive=False)
243
- extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
244
-
245
- with gr.Column():
246
- generated_image = gr.Image(label="Generated Asset", type="pil")
247
-
248
- with gr.Column():
249
-
250
- video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
251
- model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
252
-
253
- with gr.Row():
254
- download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
255
- download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
256
-
257
- output_buf = gr.State()
258
-
259
- # Event handlers
260
- demo.load(start_session)
261
- demo.unload(end_session)
262
-
263
- generate_btn.click(
264
- generate_flux_image,
265
- inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
266
- outputs=[generated_image],
267
- ).then(
268
- image_to_3d,
269
- inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
270
- outputs=[output_buf, video_output],
271
- ).then(
272
- lambda: (True, True),
273
- outputs=[extract_glb_btn, extract_gs_btn]
274
- )
275
-
276
- extract_glb_btn.click(
277
- extract_glb,
278
- inputs=[output_buf, mesh_simplify, texture_size],
279
- outputs=[model_output, download_glb]
280
- ).then(
281
- lambda: True,
282
- outputs=[download_glb]
283
- )
284
-
285
- extract_gs_btn.click(
286
- extract_gaussian,
287
- inputs=[output_buf],
288
- outputs=[model_output, download_gs]
289
- ).then(
290
- lambda: True,
291
- outputs=[download_gs]
292
- )
293
-
294
- model_output.clear(
295
- lambda: gr.Button(interactive=False),
296
- outputs=[download_glb],
297
- )
298
-
299
- # Initialize both pipelines
300
- if __name__ == "__main__":
301
- from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
302
- from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
303
-
304
- # Initialize Flux pipeline
305
- device = "cuda" if torch.cuda.is_available() else "cpu"
306
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
307
-
308
- dtype = torch.bfloat16
309
- file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
310
- file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
311
- single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
312
- quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
313
- text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
314
- if ".gguf" in file_url:
315
- transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
316
- else:
317
- quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
318
- transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
319
- flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
320
- flux_pipeline.to("cuda")
321
- # Initialize Trellis pipeline
322
- trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
323
- trellis_pipeline.cuda()
324
- try:
325
- trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
326
- except:
327
- pass
328
-
329
- demo.queue(max_size=10).launch()