|
from typing import *
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from ...modules import sparse as sp
|
|
from .base import SparseTransformerBase
|
|
|
|
|
|
class SLatEncoder(SparseTransformerBase):
|
|
def __init__(
|
|
self,
|
|
resolution: int,
|
|
in_channels: int,
|
|
model_channels: int,
|
|
latent_channels: int,
|
|
num_blocks: int,
|
|
num_heads: Optional[int] = None,
|
|
num_head_channels: Optional[int] = 64,
|
|
mlp_ratio: float = 4,
|
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
|
window_size: int = 8,
|
|
pe_mode: Literal["ape", "rope"] = "ape",
|
|
use_fp16: bool = False,
|
|
use_checkpoint: bool = False,
|
|
qk_rms_norm: bool = False,
|
|
):
|
|
super().__init__(
|
|
in_channels=in_channels,
|
|
model_channels=model_channels,
|
|
num_blocks=num_blocks,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
mlp_ratio=mlp_ratio,
|
|
attn_mode=attn_mode,
|
|
window_size=window_size,
|
|
pe_mode=pe_mode,
|
|
use_fp16=use_fp16,
|
|
use_checkpoint=use_checkpoint,
|
|
qk_rms_norm=qk_rms_norm,
|
|
)
|
|
self.resolution = resolution
|
|
self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)
|
|
|
|
self.initialize_weights()
|
|
if use_fp16:
|
|
self.convert_to_fp16()
|
|
|
|
def initialize_weights(self) -> None:
|
|
super().initialize_weights()
|
|
|
|
nn.init.constant_(self.out_layer.weight, 0)
|
|
nn.init.constant_(self.out_layer.bias, 0)
|
|
|
|
def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False):
|
|
h = super().forward(x)
|
|
h = h.type(x.dtype)
|
|
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
|
h = self.out_layer(h)
|
|
|
|
|
|
mean, logvar = h.feats.chunk(2, dim=-1)
|
|
if sample_posterior:
|
|
std = torch.exp(0.5 * logvar)
|
|
z = mean + std * torch.randn_like(std)
|
|
else:
|
|
z = mean
|
|
z = h.replace(z)
|
|
|
|
if return_raw:
|
|
return z, mean, logvar
|
|
else:
|
|
return z
|
|
|