|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
from .tables import *
|
|
|
|
__all__ = [
|
|
'FlexiCubes'
|
|
]
|
|
|
|
|
|
class FlexiCubes:
|
|
def __init__(self, device="cuda"):
|
|
|
|
self.device = device
|
|
self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
|
|
self.num_vd_table = torch.tensor(num_vd_table,
|
|
dtype=torch.long, device=device, requires_grad=False)
|
|
self.check_table = torch.tensor(
|
|
check_table,
|
|
dtype=torch.long, device=device, requires_grad=False)
|
|
|
|
self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
|
|
self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
|
|
self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
|
|
self.quad_split_train = torch.tensor(
|
|
[0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
|
|
|
|
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
|
|
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
|
|
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
|
|
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
|
|
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
|
|
|
|
self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
|
|
dtype=torch.long, device=device)
|
|
self.dir_faces_table = torch.tensor([
|
|
[[5, 4], [3, 2], [4, 5], [2, 3]],
|
|
[[5, 4], [1, 0], [4, 5], [0, 1]],
|
|
[[3, 2], [1, 0], [2, 3], [0, 1]]
|
|
], dtype=torch.long, device=device)
|
|
self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
|
|
|
|
def __call__(self, voxelgrid_vertices, scalar_field, cube_idx, resolution, qef_reg_scale=1e-3,
|
|
weight_scale=0.99, beta=None, alpha=None, gamma_f=None, voxelgrid_colors=None, training=False):
|
|
surf_cubes, occ_fx8 = self._identify_surf_cubes(scalar_field, cube_idx)
|
|
if surf_cubes.sum() == 0:
|
|
return (
|
|
torch.zeros((0, 3), device=self.device),
|
|
torch.zeros((0, 3), dtype=torch.long, device=self.device),
|
|
torch.zeros((0), device=self.device),
|
|
torch.zeros((0, voxelgrid_colors.shape[-1]), device=self.device) if voxelgrid_colors is not None else None
|
|
)
|
|
beta, alpha, gamma_f = self._normalize_weights(
|
|
beta, alpha, gamma_f, surf_cubes, weight_scale)
|
|
|
|
if voxelgrid_colors is not None:
|
|
voxelgrid_colors = torch.sigmoid(voxelgrid_colors)
|
|
|
|
case_ids = self._get_case_id(occ_fx8, surf_cubes, resolution)
|
|
|
|
surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(
|
|
scalar_field, cube_idx, surf_cubes
|
|
)
|
|
|
|
vd, L_dev, vd_gamma, vd_idx_map, vd_color = self._compute_vd(
|
|
voxelgrid_vertices, cube_idx[surf_cubes], surf_edges, scalar_field,
|
|
case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors)
|
|
vertices, faces, s_edges, edge_indices, vertices_color = self._triangulate(
|
|
scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map,
|
|
vd_idx_map, surf_edges_mask, training, vd_color)
|
|
return vertices, faces, L_dev, vertices_color
|
|
|
|
def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
|
|
"""
|
|
Regularizer L_dev as in Equation 8
|
|
"""
|
|
dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
|
|
mean_l2 = torch.zeros_like(vd[:, 0])
|
|
mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
|
|
mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
|
|
return mad
|
|
|
|
def _normalize_weights(self, beta, alpha, gamma_f, surf_cubes, weight_scale):
|
|
"""
|
|
Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
|
|
"""
|
|
n_cubes = surf_cubes.shape[0]
|
|
|
|
if beta is not None:
|
|
beta = (torch.tanh(beta) * weight_scale + 1)
|
|
else:
|
|
beta = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
|
|
|
|
if alpha is not None:
|
|
alpha = (torch.tanh(alpha) * weight_scale + 1)
|
|
else:
|
|
alpha = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
|
|
|
|
if gamma_f is not None:
|
|
gamma_f = torch.sigmoid(gamma_f) * weight_scale + (1 - weight_scale) / 2
|
|
else:
|
|
gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
|
|
|
|
return beta[surf_cubes], alpha[surf_cubes], gamma_f[surf_cubes]
|
|
|
|
@torch.no_grad()
|
|
def _get_case_id(self, occ_fx8, surf_cubes, res):
|
|
"""
|
|
Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
|
|
ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
|
|
supplementary material. It should be noted that this function assumes a regular grid.
|
|
"""
|
|
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
|
|
|
|
problem_config = self.check_table.to(self.device)[case_ids]
|
|
to_check = problem_config[..., 0] == 1
|
|
problem_config = problem_config[to_check]
|
|
if not isinstance(res, (list, tuple)):
|
|
res = [res, res, res]
|
|
|
|
|
|
|
|
|
|
problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
|
|
vol_idx = torch.nonzero(problem_config_full[..., 0] == 0)
|
|
vol_idx_problem = vol_idx[surf_cubes][to_check]
|
|
problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
|
|
vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
|
|
|
|
within_range = (
|
|
vol_idx_problem_adj[..., 0] >= 0) & (
|
|
vol_idx_problem_adj[..., 0] < res[0]) & (
|
|
vol_idx_problem_adj[..., 1] >= 0) & (
|
|
vol_idx_problem_adj[..., 1] < res[1]) & (
|
|
vol_idx_problem_adj[..., 2] >= 0) & (
|
|
vol_idx_problem_adj[..., 2] < res[2])
|
|
|
|
vol_idx_problem = vol_idx_problem[within_range]
|
|
vol_idx_problem_adj = vol_idx_problem_adj[within_range]
|
|
problem_config = problem_config[within_range]
|
|
problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
|
|
vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
|
|
|
|
to_invert = (problem_config_adj[..., 0] == 1)
|
|
idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
|
|
case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
|
|
return case_ids
|
|
|
|
@torch.no_grad()
|
|
def _identify_surf_edges(self, scalar_field, cube_idx, surf_cubes):
|
|
"""
|
|
Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
|
|
can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
|
|
and marks the cube edges with this index.
|
|
"""
|
|
occ_n = scalar_field < 0
|
|
all_edges = cube_idx[surf_cubes][:, self.cube_edges].reshape(-1, 2)
|
|
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
|
|
|
|
unique_edges = unique_edges.long()
|
|
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
|
|
|
|
surf_edges_mask = mask_edges[_idx_map]
|
|
counts = counts[_idx_map]
|
|
|
|
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_idx.device) * -1
|
|
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_idx.device)
|
|
|
|
|
|
idx_map = mapping[_idx_map]
|
|
surf_edges = unique_edges[mask_edges]
|
|
return surf_edges, idx_map, counts, surf_edges_mask
|
|
|
|
@torch.no_grad()
|
|
def _identify_surf_cubes(self, scalar_field, cube_idx):
|
|
"""
|
|
Identifies grid cubes that intersect with the underlying surface by checking if the signs at
|
|
all corners are not identical.
|
|
"""
|
|
occ_n = scalar_field < 0
|
|
occ_fx8 = occ_n[cube_idx.reshape(-1)].reshape(-1, 8)
|
|
_occ_sum = torch.sum(occ_fx8, -1)
|
|
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
|
|
return surf_cubes, occ_fx8
|
|
|
|
def _linear_interp(self, edges_weight, edges_x):
|
|
"""
|
|
Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
|
|
"""
|
|
edge_dim = edges_weight.dim() - 2
|
|
assert edges_weight.shape[edge_dim] == 2
|
|
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
|
|
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)]
|
|
, edge_dim)
|
|
denominator = edges_weight.sum(edge_dim)
|
|
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
|
|
return ue
|
|
|
|
def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3, qef_reg_scale):
|
|
p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
|
|
norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
|
|
c_bx3 = c_bx3.reshape(-1, 3)
|
|
A = norm_bxnx3
|
|
B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
|
|
|
|
A_reg = (torch.eye(3, device=p_bxnx3.device) * qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
|
|
B_reg = (qef_reg_scale * c_bx3).unsqueeze(-1)
|
|
A = torch.cat([A, A_reg], 1)
|
|
B = torch.cat([B, B_reg], 1)
|
|
dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
|
|
return dual_verts
|
|
|
|
def _compute_vd(self, voxelgrid_vertices, surf_cubes_fx8, surf_edges, scalar_field,
|
|
case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors):
|
|
"""
|
|
Computes the location of dual vertices as described in Section 4.2
|
|
"""
|
|
alpha_nx12x2 = torch.index_select(input=alpha, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
|
|
surf_edges_x = torch.index_select(input=voxelgrid_vertices, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
|
|
surf_edges_s = torch.index_select(input=scalar_field, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
|
|
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
|
|
|
|
if voxelgrid_colors is not None:
|
|
C = voxelgrid_colors.shape[-1]
|
|
surf_edges_c = torch.index_select(input=voxelgrid_colors, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, C)
|
|
|
|
idx_map = idx_map.reshape(-1, 12)
|
|
num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
|
|
edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
|
|
|
|
|
|
|
|
|
|
total_num_vd = 0
|
|
vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
|
|
|
|
for num in torch.unique(num_vd):
|
|
cur_cubes = (num_vd == num)
|
|
curr_num_vd = cur_cubes.sum() * num
|
|
curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
|
|
curr_edge_group_to_vd = torch.arange(
|
|
curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
|
|
total_num_vd += curr_num_vd
|
|
curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
|
|
cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
|
|
|
|
curr_mask = (curr_edge_group != -1)
|
|
edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
|
|
edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
|
|
edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
|
|
vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
|
|
vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
|
|
|
|
|
|
|
|
edge_group = torch.cat(edge_group)
|
|
edge_group_to_vd = torch.cat(edge_group_to_vd)
|
|
edge_group_to_cube = torch.cat(edge_group_to_cube)
|
|
vd_num_edges = torch.cat(vd_num_edges)
|
|
vd_gamma = torch.cat(vd_gamma)
|
|
|
|
|
|
|
|
|
|
|
|
vd = torch.zeros((total_num_vd, 3), device=self.device)
|
|
beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
|
|
|
|
idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
|
|
|
|
x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
|
|
s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
|
|
|
|
|
|
zero_crossing_group = torch.index_select(
|
|
input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
|
|
|
|
alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
|
|
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
|
|
ue_group = self._linear_interp(s_group * alpha_group, x_group)
|
|
|
|
beta_group = torch.gather(input=beta.reshape(-1), dim=0,
|
|
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
|
|
beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
|
|
vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
|
|
|
|
'''
|
|
interpolate colors use the same method as dual vertices
|
|
'''
|
|
if voxelgrid_colors is not None:
|
|
vd_color = torch.zeros((total_num_vd, C), device=self.device)
|
|
c_group = torch.index_select(input=surf_edges_c, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, C)
|
|
uc_group = self._linear_interp(s_group * alpha_group, c_group)
|
|
vd_color = vd_color.index_add_(0, index=edge_group_to_vd, source=uc_group * beta_group) / beta_sum
|
|
else:
|
|
vd_color = None
|
|
|
|
L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
|
|
|
|
v_idx = torch.arange(vd.shape[0], device=self.device)
|
|
|
|
vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
|
|
12 + edge_group, src=v_idx[edge_group_to_vd])
|
|
|
|
return vd, L_dev, vd_gamma, vd_idx_map, vd_color
|
|
|
|
def _triangulate(self, scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, vd_color):
|
|
"""
|
|
Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
|
|
triangles based on the gamma parameter, as described in Section 4.3.
|
|
"""
|
|
with torch.no_grad():
|
|
group_mask = (edge_counts == 4) & surf_edges_mask
|
|
group = idx_map.reshape(-1)[group_mask]
|
|
vd_idx = vd_idx_map[group_mask]
|
|
edge_indices, indices = torch.sort(group, stable=True)
|
|
quad_vd_idx = vd_idx[indices].reshape(-1, 4)
|
|
|
|
|
|
s_edges = scalar_field[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
|
|
flip_mask = s_edges[:, 0] > 0
|
|
quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
|
|
quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
|
|
|
|
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
|
|
gamma_02 = quad_gamma[:, 0] * quad_gamma[:, 2]
|
|
gamma_13 = quad_gamma[:, 1] * quad_gamma[:, 3]
|
|
if not training:
|
|
mask = (gamma_02 > gamma_13)
|
|
faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
|
|
faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
|
|
faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
|
|
faces = faces.reshape(-1, 3)
|
|
else:
|
|
vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
|
|
vd_02 = (vd_quad[:, 0] + vd_quad[:, 2]) / 2
|
|
vd_13 = (vd_quad[:, 1] + vd_quad[:, 3]) / 2
|
|
weight_sum = (gamma_02 + gamma_13) + 1e-8
|
|
vd_center = (vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
|
|
|
|
if vd_color is not None:
|
|
color_quad = torch.index_select(input=vd_color, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, vd_color.shape[-1])
|
|
color_02 = (color_quad[:, 0] + color_quad[:, 2]) / 2
|
|
color_13 = (color_quad[:, 1] + color_quad[:, 3]) / 2
|
|
color_center = (color_02 * gamma_02.unsqueeze(-1) + color_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
|
|
vd_color = torch.cat([vd_color, color_center])
|
|
|
|
|
|
vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
|
|
vd = torch.cat([vd, vd_center])
|
|
faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
|
|
faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
|
|
return vd, faces, s_edges, edge_indices, vd_color
|
|
|