File size: 2,299 Bytes
5ecde30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import pandas as pd
import openai
import streamlit as st
from src.E_openAI_embeddings import calculate_openai_similarity, get_openai_embedding
from src.E_openAI_model import get_ballanced_intents, create_prompt, get_most_similar_intent, get_similarity_scores

# Streamlit App
st.title("Intent Detection using GPT-4 and Sentence Transformers")

# side radio button for temperature
# 0.5, 0.7, 0.9
temperature = st.sidebar.radio("Select temperature", [0.5, 0.7, 0.9])

# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type="csv")

if uploaded_file is not None:
    data = pd.read_csv(uploaded_file)
    # if data exeed 10000 rows, we will filter for 10000 rows
    #filtered_data = get_ballanced_intents(data)
    #st.write(filtered_data[:5])
    #st.write(f"Filtered data shape: {filtered_data.intent.unique()}")
    st.session_state['data'] = data # filtered_data  # Store the uploaded file in session state
    st.write("CSV file successfully uploaded!")

# Load the data from session state
if 'data' in st.session_state:
    data = st.session_state['data']
    # Extract utterances and intents
    utterances = data['utterance'].tolist()
    intents = data['intent'].tolist()
    
    user_text = st.text_input("Enter user text:")

    if st.button("Detect Intent"):
        if user_text:
            most_similar_intent, confidence = get_most_similar_intent(user_text, utterances, intents)
            st.write(f"Most similar intent: {most_similar_intent}")
            st.write(f"Confidence: {confidence}")

        if user_text:
            # Get embedding for the user input
            user_embedding = get_openai_embedding(user_text)
            
            # Search in FAISS index for top 5 most similar sentences
            top_similar_sentences = calculate_openai_similarity(user_embedding, data, top_n=5)

            # Display the results
            st.write(f"Top 5 similar sentences:")
            for i, (sentence, score) in enumerate(top_similar_sentences):
                st.write(f"{i+1}. Sentence: {sentence}")
                st.write(f"Similarity score: {score:.4f}")
        else:
            st.write("Please enter some text.")
else:
    st.write("Please upload a CSV file.")


# User input
user_input = st.text_input("Enter a sentence:")