georad commited on
Commit
f31edcc
Β·
verified Β·
1 Parent(s): d88f29e

Delete pages/upload_file.py

Browse files
Files changed (1) hide show
  1. pages/upload_file.py +0 -86
pages/upload_file.py DELETED
@@ -1,86 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- from io import StringIO
4
- import json
5
- from transformers import pipeline # AutoTokenizer, AutoModelForTokenClassification
6
-
7
- #for k, v in st.session_state.items():
8
- # st.session_state[k] = v
9
-
10
- def on_click():
11
- st.session_state.user_input = ""
12
-
13
- #@st.cache
14
- def convert_df(df:pd.DataFrame):
15
- return df.to_csv(index=False).encode('utf-8')
16
-
17
- #@st.cache
18
- def convert_json(df:pd.DataFrame):
19
- result = df.to_json(orient="index")
20
- parsed = json.loads(result)
21
- json_string = json.dumps(parsed)
22
- #st.json(json_string, expanded=True)
23
- return json_string
24
-
25
- st.header("Work in Progress")
26
-
27
- uploaded_file = st.file_uploader(label = "Upload single csv file")
28
- if uploaded_file is not None:
29
- stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
30
- string_data = stringio.read()
31
- st.success('Your file input is: '+ string_data, icon="βœ…")
32
-
33
-
34
-
35
- #df_topics = filter_chapters_env(df_topics, "chapter_name")
36
-
37
-
38
-
39
- #my_model_results = pipeline("ner", model= "checkpoint-92")
40
- #HuggingFace_model_results = pipeline("ner", model = "blaze999/Medical-NER")
41
-
42
-
43
- createNER_button = st.button("Map to SBS codes")
44
-
45
- #col1, col2, col3 = st.columns([1,1,2.5])
46
- #col1.subheader("Score")
47
- #col2.subheader("SBS code")
48
- #col3.subheader("SBS description V2.0")
49
-
50
- dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
51
-
52
-
53
- #if uploaded_file is not None and createNER_button == True:
54
- # dict1 = {"word": [], "entity": []}
55
- # dict2 = {"word": [], "entity": []}
56
- # #stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
57
- # #string_data = stringio.read()
58
- # #st.write("Your input is: ", string_data)
59
- # #with col1:
60
- # # #st.write(my_model_results(string_data))
61
- # # #col1.subheader("myDemo Model")
62
- # # #for result in my_model_results(string_data):
63
- # # # st.write(result['word'], result['entity'])
64
- # # # dict1["word"].append(result['word']), dict1["entity"].append(result['entity'])
65
- # # #df1 = pd.DataFrame.from_dict(dict1)
66
- # # #st.write(df1)
67
- # with col2:
68
- # #st.write(HuggingFace_model_results(string_data))
69
- # #col2.subheader("Hugging Face Model")
70
- # for result in HuggingFace_model_results(string_data):
71
- # st.write(result['word'], result['entity'])
72
- # dict2["word"].append(result['word']), dict2["entity"].append(result['entity'])
73
- # df2 = pd.DataFrame.from_dict(dict2)
74
- # #st.write(df2)
75
-
76
-
77
- # cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
78
- # with c1:
79
- # #csvbutton = download_button(results, "results.csv", "πŸ“₯ Download .csv")
80
- # csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(df1), file_name= "results.csv", mime='text/csv', key='csv')
81
- # with c2:
82
- # #textbutton = download_button(results, "results.txt", "πŸ“₯ Download .txt")
83
- # textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(df1), file_name= "results.text", mime='text/plain', key='text')
84
- # with c3:
85
- # #jsonbutton = download_button(results, "results.json", "πŸ“₯ Download .json")
86
- # jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(df1), file_name= "results.json", mime='application/json', key='json')