georad commited on
Commit
7d6ec21
Β·
verified Β·
1 Parent(s): b797bd7

Update pages/upload_file.py

Browse files
Files changed (1) hide show
  1. pages/upload_file.py +76 -1
pages/upload_file.py CHANGED
@@ -1,2 +1,77 @@
1
  import streamlit as st
2
- st.header("Work in Progress")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import pandas as pd
3
+ from io import StringIO
4
+ import json
5
+ from transformers import pipeline
6
+ #from transformers import AutoTokenizer, AutoModelForTokenClassification
7
+
8
+ def on_click():
9
+ st.session_state.user_input = ""
10
+
11
+ #@st.cache
12
+ def convert_df(df:pd.DataFrame):
13
+ return df.to_csv(index=False).encode('utf-8')
14
+
15
+ #@st.cache
16
+ def convert_json(df:pd.DataFrame):
17
+ result = df.to_json(orient="index")
18
+ parsed = json.loads(result)
19
+ json_string = json.dumps(parsed)
20
+ #st.json(json_string, expanded=True)
21
+ return json_string
22
+
23
+ #st.title("πŸ“˜SBS mapper")
24
+ st.header("Work in Progress")
25
+
26
+ uploaded_file = st.file_uploader(label = "Upload single csv file")
27
+ if uploaded_file is not None:
28
+ stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
29
+ string_data = stringio.read()
30
+ st.success('Your file input is: '+ string_data, icon="βœ…")
31
+
32
+
33
+ #my_model_results = pipeline("ner", model= "checkpoint-92")
34
+ HuggingFace_model_results = pipeline("ner", model = "blaze999/Medical-NER")
35
+
36
+
37
+ createNER_button = st.button("Map to SBS codes")
38
+
39
+ col1, col2, col3 = st.columns([1,1.5,1])
40
+ col1.subheader("SBS code V2.0")
41
+ col2.subheader("SBS description v2.0")
42
+ col3.subheader("Similarity score")
43
+
44
+ if uploaded_file is not None and createNER_button == True:
45
+ dict1 = {"word": [], "entity": []}
46
+ dict2 = {"word": [], "entity": []}
47
+ #stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
48
+ #string_data = stringio.read()
49
+ #st.write("Your input is: ", string_data)
50
+ #with col1:
51
+ # #st.write(my_model_results(string_data))
52
+ # #col1.subheader("myDemo Model")
53
+ # #for result in my_model_results(string_data):
54
+ # # st.write(result['word'], result['entity'])
55
+ # # dict1["word"].append(result['word']), dict1["entity"].append(result['entity'])
56
+ # #df1 = pd.DataFrame.from_dict(dict1)
57
+ # #st.write(df1)
58
+ with col2:
59
+ #st.write(HuggingFace_model_results(string_data))
60
+ #col2.subheader("Hugging Face Model")
61
+ for result in HuggingFace_model_results(string_data):
62
+ st.write(result['word'], result['entity'])
63
+ dict2["word"].append(result['word']), dict2["entity"].append(result['entity'])
64
+ df2 = pd.DataFrame.from_dict(dict2)
65
+ #st.write(df2)
66
+
67
+
68
+ cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
69
+ with c1:
70
+ #csvbutton = download_button(results, "results.csv", "πŸ“₯ Download .csv")
71
+ csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(df1), file_name= "results.csv", mime='text/csv', key='csv')
72
+ with c2:
73
+ #textbutton = download_button(results, "results.txt", "πŸ“₯ Download .txt")
74
+ textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(df1), file_name= "results.text", mime='text/plain', key='text')
75
+ with c3:
76
+ #jsonbutton = download_button(results, "results.json", "πŸ“₯ Download .json")
77
+ jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(df1), file_name= "results.json", mime='application/json', key='json')