Update pages/type_text.py
Browse files- pages/type_text.py +11 -9
pages/type_text.py
CHANGED
@@ -46,12 +46,13 @@ numMAPPINGS_input = 5
|
|
46 |
def load_model():
|
47 |
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
48 |
return model
|
|
|
|
|
49 |
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
50 |
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
51 |
#model = SentenceTransformers('all-distilroberta-v1')
|
52 |
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
53 |
#model = SentenceTransformer('clips/mfaq')
|
54 |
-
load_model()
|
55 |
|
56 |
INTdesc_embedding = model.encode(INTdesc_input)
|
57 |
|
@@ -74,12 +75,13 @@ HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|
|
74 |
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
|
75 |
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
|
76 |
|
77 |
-
|
78 |
-
def load_model_pipe():
|
79 |
-
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
80 |
-
return pipe
|
|
|
|
|
81 |
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
82 |
-
load_model_pipe()
|
83 |
|
84 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
85 |
dfALL = pd.DataFrame.from_dict(dictA)
|
@@ -120,10 +122,10 @@ if INTdesc_input is not None and createSBScodes_clicked == True:
|
|
120 |
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
121 |
with b1:
|
122 |
#csvbutton = download_button(results, "results.csv", "π₯ Download .csv")
|
123 |
-
csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(
|
124 |
with b2:
|
125 |
#textbutton = download_button(results, "results.txt", "π₯ Download .txt")
|
126 |
-
textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(
|
127 |
with b3:
|
128 |
#jsonbutton = download_button(results, "results.json", "π₯ Download .json")
|
129 |
-
jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(
|
|
|
46 |
def load_model():
|
47 |
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
48 |
return model
|
49 |
+
load_model()
|
50 |
+
|
51 |
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
52 |
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
53 |
#model = SentenceTransformers('all-distilroberta-v1')
|
54 |
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
55 |
#model = SentenceTransformer('clips/mfaq')
|
|
|
56 |
|
57 |
INTdesc_embedding = model.encode(INTdesc_input)
|
58 |
|
|
|
75 |
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
|
76 |
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
|
77 |
|
78 |
+
#@st.cache_resource
|
79 |
+
#def load_model_pipe():
|
80 |
+
# pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
81 |
+
# return pipe
|
82 |
+
#load_model_pipe()
|
83 |
+
|
84 |
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
|
|
85 |
|
86 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
87 |
dfALL = pd.DataFrame.from_dict(dictA)
|
|
|
122 |
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
123 |
with b1:
|
124 |
#csvbutton = download_button(results, "results.csv", "π₯ Download .csv")
|
125 |
+
csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(dfALL), file_name= "results.csv", mime='text/csv', key='csv_b')
|
126 |
with b2:
|
127 |
#textbutton = download_button(results, "results.txt", "π₯ Download .txt")
|
128 |
+
textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(dfALL), file_name= "results.text", mime='text/plain', key='text_b')
|
129 |
with b3:
|
130 |
#jsonbutton = download_button(results, "results.json", "π₯ Download .json")
|
131 |
+
jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(dfALL), file_name= "results.json", mime='application/json', key='json_b')
|