Update pages/upload_file.py
Browse files- pages/upload_file.py +37 -38
pages/upload_file.py
CHANGED
@@ -18,8 +18,7 @@ def convert_json(df:pd.DataFrame):
|
|
18 |
json_string = json.dumps(parsed)
|
19 |
#st.json(json_string, expanded=True)
|
20 |
return json_string
|
21 |
-
|
22 |
-
#st.title("πSBS mapper")
|
23 |
st.header("Work in Progress")
|
24 |
|
25 |
uploaded_file = st.file_uploader(label = "Upload single csv file")
|
@@ -35,45 +34,45 @@ if uploaded_file is not None:
|
|
35 |
|
36 |
createNER_button = st.button("Map to SBS codes")
|
37 |
|
38 |
-
col1, col2, col3 = st.columns([1,1,2.5])
|
39 |
-
col1.subheader("Score")
|
40 |
-
col2.subheader("SBS code")
|
41 |
-
col3.subheader("SBS description V2.0")
|
42 |
|
43 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
44 |
|
45 |
|
46 |
-
if uploaded_file is not None and createNER_button == True:
|
47 |
-
dict1 = {"word": [], "entity": []}
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
#with col1:
|
53 |
-
# #st.write(my_model_results(string_data))
|
54 |
-
# #col1.subheader("myDemo Model")
|
55 |
-
# #for result in my_model_results(string_data):
|
56 |
-
# # st.write(result['word'], result['entity'])
|
57 |
-
# # dict1["word"].append(result['word']), dict1["entity"].append(result['entity'])
|
58 |
-
# #df1 = pd.DataFrame.from_dict(dict1)
|
59 |
-
|
60 |
-
with col2:
|
61 |
-
#st.write(HuggingFace_model_results(string_data))
|
62 |
-
#col2.subheader("Hugging Face Model")
|
63 |
-
for result in HuggingFace_model_results(string_data):
|
64 |
-
st.write(result['word'], result['entity'])
|
65 |
-
dict2["word"].append(result['word']), dict2["entity"].append(result['entity'])
|
66 |
-
df2 = pd.DataFrame.from_dict(dict2)
|
67 |
-
#st.write(df2)
|
68 |
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
18 |
json_string = json.dumps(parsed)
|
19 |
#st.json(json_string, expanded=True)
|
20 |
return json_string
|
21 |
+
|
|
|
22 |
st.header("Work in Progress")
|
23 |
|
24 |
uploaded_file = st.file_uploader(label = "Upload single csv file")
|
|
|
34 |
|
35 |
createNER_button = st.button("Map to SBS codes")
|
36 |
|
37 |
+
#col1, col2, col3 = st.columns([1,1,2.5])
|
38 |
+
#col1.subheader("Score")
|
39 |
+
#col2.subheader("SBS code")
|
40 |
+
#col3.subheader("SBS description V2.0")
|
41 |
|
42 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
43 |
|
44 |
|
45 |
+
#if uploaded_file is not None and createNER_button == True:
|
46 |
+
# dict1 = {"word": [], "entity": []}
|
47 |
+
# dict2 = {"word": [], "entity": []}
|
48 |
+
# #stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
49 |
+
# #string_data = stringio.read()
|
50 |
+
# #st.write("Your input is: ", string_data)
|
51 |
+
# #with col1:
|
52 |
+
# # #st.write(my_model_results(string_data))
|
53 |
+
# # #col1.subheader("myDemo Model")
|
54 |
+
# # #for result in my_model_results(string_data):
|
55 |
+
# # # st.write(result['word'], result['entity'])
|
56 |
+
# # # dict1["word"].append(result['word']), dict1["entity"].append(result['entity'])
|
57 |
+
# # #df1 = pd.DataFrame.from_dict(dict1)
|
58 |
+
# # #st.write(df1)
|
59 |
+
# with col2:
|
60 |
+
# #st.write(HuggingFace_model_results(string_data))
|
61 |
+
# #col2.subheader("Hugging Face Model")
|
62 |
+
# for result in HuggingFace_model_results(string_data):
|
63 |
+
# st.write(result['word'], result['entity'])
|
64 |
+
# dict2["word"].append(result['word']), dict2["entity"].append(result['entity'])
|
65 |
+
# df2 = pd.DataFrame.from_dict(dict2)
|
66 |
+
# #st.write(df2)
|
67 |
|
68 |
|
69 |
+
# cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
70 |
+
# with c1:
|
71 |
+
# #csvbutton = download_button(results, "results.csv", "π₯ Download .csv")
|
72 |
+
# csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(df1), file_name= "results.csv", mime='text/csv', key='csv')
|
73 |
+
# with c2:
|
74 |
+
# #textbutton = download_button(results, "results.txt", "π₯ Download .txt")
|
75 |
+
# textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(df1), file_name= "results.text", mime='text/plain', key='text')
|
76 |
+
# with c3:
|
77 |
+
# #jsonbutton = download_button(results, "results.json", "π₯ Download .json")
|
78 |
+
# jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(df1), file_name= "results.json", mime='application/json', key='json')
|