import streamlit as st | |
import pandas as pd | |
from io import StringIO | |
import json | |
from transformers import pipeline # AutoTokenizer, AutoModelForTokenClassification | |
#for k, v in st.session_state.items(): | |
# st.session_state[k] = v | |
def on_click(): | |
st.session_state.user_input = "" | |
#@st.cache | |
def convert_df(df:pd.DataFrame): | |
return df.to_csv(index=False).encode('utf-8') | |
#@st.cache | |
def convert_json(df:pd.DataFrame): | |
result = df.to_json(orient="index") | |
parsed = json.loads(result) | |
json_string = json.dumps(parsed) | |
#st.json(json_string, expanded=True) | |
return json_string | |
st.header("Work in Progress") | |
uploaded_file = st.file_uploader(label = "Upload single csv file") | |
if uploaded_file is not None: | |
stringio = StringIO(uploaded_file.getvalue().decode("utf-8")) | |
string_data = stringio.read() | |
st.success('Your file input is: '+ string_data, icon="β ") | |
#df_topics = filter_chapters_env(df_topics, "chapter_name") | |
#my_model_results = pipeline("ner", model= "checkpoint-92") | |
#HuggingFace_model_results = pipeline("ner", model = "blaze999/Medical-NER") | |
createNER_button = st.button("Map to SBS codes") | |
#col1, col2, col3 = st.columns([1,1,2.5]) | |
#col1.subheader("Score") | |
#col2.subheader("SBS code") | |
#col3.subheader("SBS description V2.0") | |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []} | |
#if uploaded_file is not None and createNER_button == True: | |
# dict1 = {"word": [], "entity": []} | |
# dict2 = {"word": [], "entity": []} | |
# #stringio = StringIO(uploaded_file.getvalue().decode("utf-8")) | |
# #string_data = stringio.read() | |
# #st.write("Your input is: ", string_data) | |
# #with col1: | |
# # #st.write(my_model_results(string_data)) | |
# # #col1.subheader("myDemo Model") | |
# # #for result in my_model_results(string_data): | |
# # # st.write(result['word'], result['entity']) | |
# # # dict1["word"].append(result['word']), dict1["entity"].append(result['entity']) | |
# # #df1 = pd.DataFrame.from_dict(dict1) | |
# # #st.write(df1) | |
# with col2: | |
# #st.write(HuggingFace_model_results(string_data)) | |
# #col2.subheader("Hugging Face Model") | |
# for result in HuggingFace_model_results(string_data): | |
# st.write(result['word'], result['entity']) | |
# dict2["word"].append(result['word']), dict2["entity"].append(result['entity']) | |
# df2 = pd.DataFrame.from_dict(dict2) | |
# #st.write(df2) | |
# cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75]) | |
# with c1: | |
# #csvbutton = download_button(results, "results.csv", "π₯ Download .csv") | |
# csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(df1), file_name= "results.csv", mime='text/csv', key='csv') | |
# with c2: | |
# #textbutton = download_button(results, "results.txt", "π₯ Download .txt") | |
# textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(df1), file_name= "results.text", mime='text/plain', key='text') | |
# with c3: | |
# #jsonbutton = download_button(results, "results.json", "π₯ Download .json") | |
# jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(df1), file_name= "results.json", mime='application/json', key='json') |