File size: 7,744 Bytes
1b200e2
 
 
 
14e76ad
1b200e2
 
 
 
 
0f3d21e
 
1b200e2
6f77d89
fd597ad
 
 
6f77d89
 
 
 
 
 
 
 
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955babe
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4439507
 
1b200e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2ed78
1b200e2
 
7b2ed78
 
1b200e2
 
 
 
 
7b2ed78
1b200e2
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import pandas as pd
from io import StringIO
import json
#import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #AutoModelForTokenClassification
from sentence_transformers import SentenceTransformer, util 
#import lmdeploy
#import turbomind as tm 

import os
os.getenv("HF_TOKEN")

PAGES = {
    "Home": Pages.home,
    "Demo": Pages.demo,
    "About": Pages.about
}

st.sidebar.title("SBSmapper")
selection = st.sidebar.radio("Pages", list(PAGES.keys()))




def on_click():
    st.session_state.user_input = ""

#@st.cache
def convert_df(df:pd.DataFrame):
     return df.to_csv(index=False).encode('utf-8')

#@st.cache
def convert_json(df:pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    #st.json(json_string, expanded=True)
    return json_string

#st.title("πŸ“˜SBS mapper")

INTdesc_input = st.text_input("Type internal description and hit Enter", key="user_input") 

createSBScodes, right_column = st.columns(2)
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
right_column.button("Reset", on_click=on_click)

numMAPPINGS_input = 5
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
#st.button("Clear text", on_click=on_click)


model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
#model = SentenceTransformers('all-distilroberta-v1')
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5') 
#model = SentenceTransformer('clips/mfaq')

INTdesc_embedding = model.encode(INTdesc_input)

# Semantic search, Compute cosine similarity between all pairs of SBS descriptions

#df_SBS = pd.read_csv("SBS_V2_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
#df_SBS = pd.read_csv("SBS_V2_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"]) 
from_line = 7727 # Imaging services chapter start, adjust as needed
to_line = 8239 # Imaging services chapter end, adjust as needed
nrows = to_line - from_line + 1
skiprows = list(range(1,from_line - 1))
df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
#st.write(df_SBS.head(5))

SBScorpus = df_SBS['Long_Description'].values.tolist()
SBScorpus_embeddings = model.encode(SBScorpus)

#my_model_results = pipeline("ner", model= "checkpoint-92")
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]

model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline("text-generation", model=model_id, device_map="auto",) # torch_dtype=torch.bfloat16


col1, col2, col3 = st.columns([1,1,2.5])
col1.subheader("Score")
col2.subheader("SBS code")
col3.subheader("SBS description V2.0")

dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}

if INTdesc_input is not None and createSBScodes_clicked == True: 
    #for i, result in enumerate(HF_model_results_displayed):
    for result in HF_model_results_displayed:
        with st.container():
            col1.write("%.4f" % result[0]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[0]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[0]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[0]["corpus_id"]])

            col1.write("%.4f" % result[1]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[1]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[1]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[1]["corpus_id"]])
            
            col1.write("%.4f" % result[2]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[2]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[2]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[2]["corpus_id"]])
            
            col1.write("%.4f" % result[3]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[3]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[3]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[3]["corpus_id"]])
            
            col1.write("%.4f" % result[4]["score"])
            col2.write(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0])
            col3.write(SBScorpus[result[4]["corpus_id"]])
            dictA["Score"].append("%.4f" % result[4]["score"]), dictA["SBS Code"].append(df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0]), dictA["SBS Description V2.0"].append(SBScorpus[result[4]["corpus_id"]])

            dfA = pd.DataFrame.from_dict(dictA) 

    display_format = "ask REASONING MODEL: Which, if any, of the above Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? " 
    st.write(display_format)
    question = "Which, if any, of the below Saudi Billing System descriptions corresponds best to " + INTdesc_input +"? " 
    shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]] 
    prompt = [question + " " + shortlist[0] + " " + shortlist[1] + " " + shortlist[2] + " " + shortlist[3] + " " + shortlist[4]]
    #st.write(prompt)
    
    messages = [
    {"role": "system", "content": "You are a knowledgable AI assistant who always answers truthfully and precisely!"},
    {"role": "user", "content": prompt},
    ]
    outputs = pipe(
        messages,
        max_new_tokens=256,
    )
    st.write(outputs[0]["generated_text"][-1]["content"])
    
    bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
    with b1:
        #csvbutton = download_button(results, "results.csv", "πŸ“₯ Download .csv")
        csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(dfA), file_name= "results.csv", mime='text/csv', key='csv_b')
    with b2:
        #textbutton = download_button(results, "results.txt", "πŸ“₯ Download .txt")
        textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(dfA), file_name= "results.text", mime='text/plain',  key='text_b')
    with b3:
        #jsonbutton = download_button(results, "results.json", "πŸ“₯ Download .json")
        jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(dfA), file_name= "results.json", mime='application/json',  key='json_b')