File size: 6,990 Bytes
d8b3f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os

if "PYOPENGL_PLATFORM" not in os.environ:
    os.environ["PYOPENGL_PLATFORM"] = "egl"

import math
import numpy as np
import pyrender
import torch
import trimesh
import cv2
import gradio as gr
from src.datasets.vitdet_dataset import ViTDetDataset
from src.models import load_hmr2

# Color of the mesh
LIGHT_BLUE = (0.65098039, 0.74117647, 0.85882353)

class WeakPerspectiveCamera(pyrender.Camera):
    def __init__(
        self,
        scale,
        translation,
        znear=10.0,
        zfar=1000.0,
        name=None,
    ):
        super(WeakPerspectiveCamera, self).__init__(
            znear=znear,
            zfar=zfar,
            name=name,
        )
        self.scale = scale
        self.translation = translation

    def get_projection_matrix(self, width=None, height=None):
        P = np.eye(4)
        P[0, 0] = self.scale[0]
        P[1, 1] = self.scale[1]
        P[0, 3] = self.translation[0] * self.scale[0]
        P[1, 3] = -self.translation[1] * self.scale[1]
        P[2, 2] = -0.1
        return P

class Renderer:
    def __init__(self, faces, resolution=(1024, 1024), orig_img=False):
        self.resolution = resolution
        self.faces = faces
        self.orig_img = orig_img
        self.renderer = pyrender.OffscreenRenderer(
            viewport_width=self.resolution[0],
            viewport_height=self.resolution[1],
            point_size=1.0,
        )
        self.scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3))

        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
        light_pose = np.eye(4)
        light_pose[:3, 3] = [0, -1, 1]
        self.scene.add(light, pose=light_pose)
        light_pose[:3, 3] = [0, 1, 1]
        self.scene.add(light, pose=light_pose)
        light_pose[:3, 3] = [1, 1, 2]
        self.scene.add(light, pose=light_pose)

    def render(self, verts, cam, color=LIGHT_BLUE, znear=1.0, zfar=10000.0):
        mesh = trimesh.Trimesh(vertices=verts, faces=self.faces, process=False)
        Rx = trimesh.transformations.rotation_matrix(math.radians(180), [1, 0, 0])
        mesh.apply_transform(Rx)

        sx, sy, tx, ty = cam
        camera = WeakPerspectiveCamera(scale=[sx, sy], translation=[tx, ty], znear=znear, zfar=zfar)
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.0, alphaMode="OPAQUE", baseColorFactor=LIGHT_BLUE
        )

        mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=True)
        mesh_node = self.scene.add(mesh, "mesh")
        camera_pose = np.eye(4)
        cam_node = self.scene.add(camera, pose=camera_pose)

        render_flags = pyrender.RenderFlags.RGBA
        rgb, depth = self.renderer.render(self.scene, flags=render_flags)

        self.scene.remove_node(mesh_node)
        self.scene.remove_node(cam_node)

        return rgb, depth

def create_temp_obj(vertices, faces):
    mesh = trimesh.Trimesh(
        vertices=vertices,
        faces=faces,
        vertex_colors=np.tile(np.array(LIGHT_BLUE + (1.0,)), (len(vertices), 1)),
    )
    temp_path = os.path.join(os.getcwd(), "out_mesh.obj")
    mesh.export(temp_path)
    return temp_path

def resize_and_pad(img):
    original_type = img.dtype
    img_to_process = img.copy()
    h, w = img_to_process.shape[:2]
    target_size = 1024
    scale = min(target_size / w, target_size / h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    resized = cv2.resize(img_to_process, (new_w, new_h), interpolation=cv2.INTER_AREA)

    if len(img.shape) == 3:
        canvas = np.zeros((target_size, target_size, img.shape[2]), dtype=original_type)
    else:
        canvas = np.zeros((target_size, target_size), dtype=original_type)

    x_offset = (target_size - new_w) // 2
    y_offset = (target_size - new_h) // 2
    canvas[y_offset : y_offset + new_h, x_offset : x_offset + new_w] = resized
    return canvas

def process_image(input_image):
    img = resize_and_pad(input_image["composite"])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    hmr2, hmr_2_cfg = load_hmr2()
    device = torch.device("cpu")
    hmr2 = hmr2.to(device)
    hmr2.eval()

    bbox = [0, 0, img.shape[1], img.shape[0]]
    dataset = ViTDetDataset(hmr_2_cfg, img, np.array([bbox]))
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
    batch = next(iter(dataloader))

    with torch.inference_mode():
        out = hmr2(batch)
        pred_verts = hmr2.smpl(**{k: v.float() for k, v in out["pred_smpl_params"].items()}, pose2rot=False).vertices[0]

    scale, tx, ty = out["scale"], out["tx"], out["ty"]

    obj_verts = pred_verts.detach().cpu().numpy()
    obj_verts[:, 1] = -obj_verts[:, 1]
    obj_verts[:, 0] = -obj_verts[:, 0]

    obj_path = create_temp_obj(obj_verts, hmr2.smpl.faces)

    if str(device) == "cpu":
        pred_verts = pred_verts * torch.tensor([-1, -1, 1])[None]

    renderer = Renderer(hmr2.smpl.faces, resolution=(img.shape[1], img.shape[0]))
    factor = 2.0
    rendered, depth = renderer.render(
        pred_verts.detach().cpu().numpy(),
        (scale * factor, scale * factor, tx / scale, ty / scale),
    )

    rendered_float = rendered.astype(np.float32) / 255.0
    out_img_float = img.astype(np.float32) / 255.0
    mask = rendered_float[:, :, 3]
    mask = np.stack([mask] * 3, axis=-1)
    rendered_rgb = rendered_float[:, :, :3]
    mesh_overlay = out_img_float * (1 - mask) + rendered_rgb * mask
    mesh_overlay = (mesh_overlay * 255).astype(np.uint8)

    return cv2.cvtColor(mesh_overlay, cv2.COLOR_RGB2BGR), obj_path

iface = gr.Interface(
    fn=process_image,
    analytics_enabled=False,
    inputs=gr.ImageEditor(
        sources=("upload", "clipboard"),
        brush=False,
        eraser=False,
        crop_size="1:1",
        layers=False,
        placeholder="Upload an image or select from the examples.",
    ),
    outputs=[
        gr.Image(label="Mesh overlay"),
        gr.Model3D(
            clear_color=[0.0, 0.0, 0.0, 0.0],
            label="3D Model",
            display_mode="point_cloud",
        ),
    ],
    title="GenZoo",
    description="""
# Generative Zoo
https://genzoo.is.tue.mpg.de
## Usage
1. **Input**: Select an example image or upload your own.
2. **Processing**: Crop the image to a square.
3. **Output**:
   - 2D mesh overlay on the original image
   - Interactive 3D model visualization
   
The demo is provided for non-commercial purposes, and its use is governed by the [LICENSE](https://genzoo.is.tue.mpg.de/license.html). \n
We thank the authors of [Humans in 4D: Reconstructing and Tracking Humans with Transformers](https://shubham-goel.github.io/4dhumans/) from which we borrowed components.
""",
    examples=[
        "gradio_example_images/000014.png",
        "gradio_example_images/000018.png",
        "gradio_example_images/000247.png",
        "gradio_example_images/000315.png",
        "gradio_example_images/001114.png",
    ],
)

iface.launch(
)