genesisclay commited on
Commit
e2ef7df
·
verified ·
1 Parent(s): f735f85

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -59
app.py CHANGED
@@ -1,64 +1,49 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
 
 
 
 
 
 
 
 
 
 
 
59
  ],
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # Load the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model
6
+ model_id = "thirdeyeai/DeepSeek-R1-Distill-Qwen-1.5B-uncensored"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
8
+ model = AutoModelForCausalLM.from_pretrained(
9
+ model_id,
10
+ torch_dtype=torch.float16, # Use float16 for efficiency
11
+ low_cpu_mem_usage=True,
12
+ device_map="auto" # Automatically use available devices
13
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
16
+ """Generate text based on prompt"""
17
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
18
+
19
+ # Generate
20
+ with torch.no_grad():
21
+ generation_output = model.generate(
22
+ input_ids=inputs.input_ids,
23
+ attention_mask=inputs.attention_mask,
24
+ max_length=len(inputs.input_ids[0]) + max_length,
25
+ temperature=temperature,
26
+ top_p=top_p,
27
+ do_sample=True,
28
+ )
29
+
30
+ # Decode and return only the generated part
31
+ generated_text = tokenizer.decode(generation_output[0], skip_special_tokens=True)
32
+ return generated_text
33
+
34
+ # Create Gradio interface
35
+ demo = gr.Interface(
36
+ fn=generate_text,
37
+ inputs=[
38
+ gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"),
39
+ gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"),
40
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
41
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p")
42
  ],
43
+ outputs=gr.Textbox(label="Generated Text"),
44
+ title="DeepSeek-R1-Distill-Qwen-1.5B Demo",
45
+ description="Enter a prompt to generate text with the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model."
46
  )
47
 
48
+ # Launch the app
49
+ demo.launch()