# Copyright 2024 MIT Han Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 from typing import Union import torch from ...apps.utils.dist import sync_tensor __all__ = ["AverageMeter"] class AverageMeter: """Computes and stores the average and current value.""" def __init__(self, is_distributed=True): self.is_distributed = is_distributed self.sum = 0 self.count = 0 def _sync(self, val: Union[torch.Tensor, int, float]) -> Union[torch.Tensor, int, float]: return sync_tensor(val, reduce="sum") if self.is_distributed else val def update(self, val: Union[torch.Tensor, int, float], delta_n=1): self.count += self._sync(delta_n) self.sum += self._sync(val * delta_n) def get_count(self) -> Union[torch.Tensor, int, float]: return self.count.item() if isinstance(self.count, torch.Tensor) and self.count.numel() == 1 else self.count @property def avg(self): avg = -1 if self.count == 0 else self.sum / self.count return avg.item() if isinstance(avg, torch.Tensor) and avg.numel() == 1 else avg