Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,65 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from PIL import Image, ImageFilter
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
import
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
def apply_gaussian_blur(image, foreground_label='person'):
|
17 |
-
"""Applies Gaussian blur to the background based on a segmentation mask for the foreground."""
|
18 |
-
|
19 |
# Prepare input for semantic segmentation
|
20 |
inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
|
21 |
|
22 |
# Semantic segmentation
|
23 |
with torch.no_grad():
|
24 |
-
outputs =
|
25 |
|
26 |
# Processing semantic segmentation output
|
27 |
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
28 |
segmentation_mask = predicted_semantic_map.cpu().numpy()
|
29 |
|
30 |
-
# Get the mapping of class IDs to labels
|
31 |
-
id2label =
|
|
|
|
|
|
|
32 |
foreground_class_id = None
|
33 |
for id, label in id2label.items():
|
34 |
if label == foreground_label:
|
@@ -36,108 +67,39 @@ def apply_gaussian_blur(image, foreground_label='person'):
|
|
36 |
break
|
37 |
|
38 |
if foreground_class_id is None:
|
39 |
-
|
40 |
-
return image # Return original image if foreground label is not found
|
41 |
|
42 |
-
#
|
43 |
output_mask_array = np.zeros(segmentation_mask.shape, dtype=np.uint8)
|
44 |
-
output_mask_array[segmentation_mask == foreground_class_id] = 255
|
45 |
-
|
46 |
-
# Convert the output mask to a PIL Image (Grayscale)
|
47 |
-
mask_pil = Image.fromarray(output_mask_array, mode='L')
|
48 |
-
|
49 |
-
# Resize the mask to match the image size
|
50 |
-
mask_pil = mask_pil.resize(image.size)
|
51 |
-
output_mask_array = np.array(mask_pil)
|
52 |
-
|
53 |
-
# Create a blurred version of the input image
|
54 |
-
blurred_background = image.filter(ImageFilter.GaussianBlur(radius=15))
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
blurred_array = np.array(blurred_background)
|
59 |
-
|
60 |
-
# Create a boolean mask (foreground = True, background = False)
|
61 |
-
foreground_mask = output_mask_array > 0
|
62 |
-
foreground_mask_3d = np.stack([foreground_mask] * 3, axis=-1)
|
63 |
-
|
64 |
-
# Blend the original image with the blurred background
|
65 |
-
final_image_array = np.where(foreground_mask_3d, img_array, blurred_array)
|
66 |
-
final_image = Image.fromarray(final_image_array.astype(np.uint8))
|
67 |
-
|
68 |
-
return final_image
|
69 |
-
|
70 |
-
def apply_lens_blur(image):
|
71 |
-
"""Applies depth-based lens blur using a pre-trained model."""
|
72 |
-
|
73 |
-
# Resize image to 512x512 for processing
|
74 |
-
resized_image = image.resize((512, 512))
|
75 |
-
image_np = np.array(resized_image)
|
76 |
|
77 |
-
#
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
# Interpolate to the original size
|
85 |
-
prediction = torch.nn.functional.interpolate(
|
86 |
-
predicted_depth.unsqueeze(1),
|
87 |
-
size=resized_image.size[::-1],
|
88 |
-
mode="bicubic",
|
89 |
-
align_corners=False,
|
90 |
-
).squeeze()
|
91 |
-
|
92 |
-
# Convert prediction to a NumPy array
|
93 |
-
depth_map = prediction.cpu().numpy()
|
94 |
-
|
95 |
-
# Normalize the depth map to the range 0-1
|
96 |
-
depth_norm = (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map))
|
97 |
-
|
98 |
-
num_blur_levels = 5
|
99 |
-
blurred_layers = []
|
100 |
-
|
101 |
-
for i in range(num_blur_levels):
|
102 |
-
sigma = i * 0.5
|
103 |
-
if sigma == 0:
|
104 |
-
blurred = image_np
|
105 |
-
else:
|
106 |
-
blurred = cv2.GaussianBlur(image_np, (15, 15), sigmaX=sigma, sigmaY=sigma, borderType=cv2.BORDER_REPLICATE)
|
107 |
-
blurred_layers.append(blurred)
|
108 |
-
|
109 |
-
depth_indices = ((1 - depth_norm) * (num_blur_levels - 1)).astype(np.uint8)
|
110 |
-
|
111 |
-
final_blurred_image = np.zeros_like(image_np)
|
112 |
-
|
113 |
-
for y in range(image_np.shape[0]):
|
114 |
-
for x in range(image_np.shape[1]):
|
115 |
-
depth_index = depth_indices[y, x]
|
116 |
-
final_blurred_image[y, x] = blurred_layers[depth_index][y, x]
|
117 |
-
|
118 |
-
# Convert the final blurred image back to a PIL Image
|
119 |
-
final_blurred_pil_image = Image.fromarray(final_blurred_image)
|
120 |
-
|
121 |
-
return final_blurred_pil_image
|
122 |
-
|
123 |
-
def process_image(image, blur_type, foreground_label='person'):
|
124 |
-
"""Processes the image based on the selected blur type."""
|
125 |
-
if blur_type == "Gaussian Blur":
|
126 |
-
return apply_gaussian_blur(image, foreground_label=foreground_label)
|
127 |
else:
|
128 |
-
return
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
fn=
|
132 |
inputs=[
|
133 |
-
gr.Image(
|
134 |
-
gr.Radio(["Gaussian
|
135 |
-
gr.
|
|
|
136 |
],
|
137 |
-
outputs=
|
138 |
-
title="
|
139 |
-
description="Upload an image
|
140 |
)
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
|
3 |
from PIL import Image, ImageFilter
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
+
from scipy.ndimage import gaussian_filter
|
7 |
+
|
8 |
+
# Load the OneFormer processor and model globally (to avoid reloading for each request)
|
9 |
+
processor = None
|
10 |
+
model = None
|
11 |
+
try:
|
12 |
+
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
13 |
+
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
14 |
+
except Exception as e:
|
15 |
+
print(f"Error loading OneFormer model: {e}")
|
16 |
+
|
17 |
+
def apply_gaussian_blur(image, mask, radius):
|
18 |
+
"""Applies Gaussian blur to the background of the image."""
|
19 |
+
blurred_background = image.filter(ImageFilter.GaussianBlur(radius=radius))
|
20 |
+
img_array = np.array(image)
|
21 |
+
blurred_array = np.array(blurred_background)
|
22 |
+
foreground_mask = mask > 0
|
23 |
+
foreground_mask_3d = np.stack([foreground_mask] * 3, axis=-1)
|
24 |
+
final_image_array = np.where(foreground_mask_3d, img_array, blurred_array)
|
25 |
+
return Image.fromarray(final_image_array.astype(np.uint8))
|
26 |
+
|
27 |
+
def apply_lens_blur(image, mask, strength):
|
28 |
+
"""Placeholder for Lens Blur function. Will be implemented later."""
|
29 |
+
# Convert PIL Image to NumPy array
|
30 |
+
img_array = np.array(image)
|
31 |
+
mask_array = np.array(mask) / 255.0 # Normalize mask to 0-1
|
32 |
|
33 |
+
# Apply a simple blur based on the mask (this is a very basic placeholder)
|
34 |
+
blurred_image = gaussian_filter(img_array, sigma=strength * mask_array[:, :, np.newaxis])
|
|
|
35 |
|
36 |
+
return Image.fromarray(blurred_image.astype(np.uint8))
|
37 |
+
|
38 |
+
def segment_and_blur(input_image, blur_type, gaussian_radius=15, lens_strength=5):
|
39 |
+
"""Segments the input image and applies the selected blur."""
|
40 |
+
if processor is None or model is None:
|
41 |
+
return "Error: OneFormer model not loaded."
|
42 |
+
|
43 |
+
image = input_image.convert("RGB")
|
44 |
+
# Rotate the image (assuming this is still needed)
|
45 |
+
image = image.rotate(-90, expand=True)
|
46 |
|
|
|
|
|
|
|
47 |
# Prepare input for semantic segmentation
|
48 |
inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
|
49 |
|
50 |
# Semantic segmentation
|
51 |
with torch.no_grad():
|
52 |
+
outputs = model(**inputs)
|
53 |
|
54 |
# Processing semantic segmentation output
|
55 |
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
56 |
segmentation_mask = predicted_semantic_map.cpu().numpy()
|
57 |
|
58 |
+
# Get the mapping of class IDs to labels
|
59 |
+
id2label = model.config.id2label
|
60 |
+
|
61 |
+
# Set foreground label to person
|
62 |
+
foreground_label = 'person'
|
63 |
foreground_class_id = None
|
64 |
for id, label in id2label.items():
|
65 |
if label == foreground_label:
|
|
|
67 |
break
|
68 |
|
69 |
if foreground_class_id is None:
|
70 |
+
return f"Error: Could not find the label '{foreground_label}' in the model's class mapping."
|
|
|
71 |
|
72 |
+
# Black background mask
|
73 |
output_mask_array = np.zeros(segmentation_mask.shape, dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# Set the pixels corresponding to the foreground object to white (255)
|
76 |
+
output_mask_array[segmentation_mask == foreground_class_id] = 255
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Convert the NumPy array to a PIL Image and resize to match input
|
79 |
+
mask_pil = Image.fromarray(output_mask_array, mode='L').resize(image.size)
|
80 |
+
mask_array = np.array(mask_pil)
|
81 |
|
82 |
+
if blur_type == "Gaussian":
|
83 |
+
blurred_image = apply_gaussian_blur(image, mask_array, gaussian_radius)
|
84 |
+
elif blur_type == "Lens":
|
85 |
+
blurred_image = apply_lens_blur(image, mask_array, lens_strength)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
else:
|
87 |
+
return "Error: Invalid blur type selected."
|
88 |
+
|
89 |
+
return blurred_image
|
90 |
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=segment_and_blur,
|
93 |
inputs=[
|
94 |
+
gr.Image(label="Input Image"),
|
95 |
+
gr.Radio(["Gaussian", "Lens"], label="Blur Type", value="Gaussian"),
|
96 |
+
gr.Slider(0, 30, step=1, default=15, label="Gaussian Blur Radius"),
|
97 |
+
gr.Slider(0, 10, step=1, default=5, label="Lens Blur Strength"),
|
98 |
],
|
99 |
+
outputs=gr.Image(label="Output Image"),
|
100 |
+
title="Image Background Blur App",
|
101 |
+
description="Upload an image, select a blur type (Gaussian or Lens), and adjust the blur parameters to blur the background while keeping the person in focus."
|
102 |
)
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
+
iface.launch()
|