gaur3009 commited on
Commit
1312174
·
verified ·
1 Parent(s): 4b04031

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import cv2
4
+ import numpy as np
5
+ from torchvision import transforms
6
+ from PIL import Image
7
+
8
+ # Load MiDaS depth estimation model
9
+ midas_model = torch.hub.load("intel-isl/MiDaS", "DPT_Hybrid")
10
+ midas_model.eval()
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ midas_model.to(device)
13
+ midas_transform = torch.hub.load("intel-isl/MiDaS", "transforms").default_transform
14
+
15
+ def estimate_depth(image):
16
+ """Estimate depth map to identify fabric folds."""
17
+ image = image.convert("RGB")
18
+ image_tensor = midas_transform(image).to(device)
19
+
20
+ with torch.no_grad():
21
+ depth = midas_model(image_tensor).squeeze().cpu().numpy()
22
+
23
+ depth = cv2.resize(depth, (image.size[0], image.size[1]))
24
+ depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255
25
+ return depth.astype(np.uint8)
26
+
27
+ def detect_folds(image):
28
+ """Apply edge detection and highlight cloth folds."""
29
+ depth_map = estimate_depth(image)
30
+ edges = cv2.Canny(depth_map, 50, 150)
31
+
32
+ # Convert edges to 3-channel image for visualization
33
+ edges_colored = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
34
+ overlay = cv2.addWeighted(np.array(image), 0.7, edges_colored, 0.3, 0)
35
+
36
+ return Image.fromarray(overlay)
37
+
38
+ def main(image):
39
+ return detect_folds(image)
40
+
41
+ iface = gr.Interface(
42
+ fn=main,
43
+ inputs=gr.Image(type="pil"),
44
+ outputs=gr.Image(type="pil"),
45
+ title="Cloth Fold Detection",
46
+ description="Upload an image of clothing to visualize folds using depth estimation and edge detection."
47
+ )
48
+
49
+ if __name__ == "__main__":
50
+ iface.launch(share=True, debug=True)