new_mmm / app.py
gaur3009's picture
Update app.py
1a439bd verified
raw
history blame
3.75 kB
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image
from torchvision import transforms
from skimage.restoration import denoise_tv_chambolle
from transformers import SamModel, SamProcessor
# Load SAM model
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
def segment_dress(image):
"""Segments the dress from an input image using SAM."""
input_points = [[[image.size[0] // 2, image.size[1] // 2]]]
inputs = processor(image, input_points=input_points, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
)
return masks[0][0].numpy() if masks else None
def warp_design(design, mask, warp_scale):
"""Warp the design using TPS and scale control."""
h, w = mask.shape[:2]
design_resized = cv2.resize(design, (w, h))
# Normalize mask, convert to uint8
scaled_mask = (mask * 255).astype(np.uint8)
# Ensure single-channel mask
if len(scaled_mask.shape) == 3 and scaled_mask.shape[2] == 3:
scaled_mask = cv2.cvtColor(scaled_mask, cv2.COLOR_BGR2GRAY)
# Resize the mask if needed
if scaled_mask.shape != (h, w):
scaled_mask = cv2.resize(scaled_mask, (w, h), interpolation=cv2.INTER_NEAREST)
print(f"Design Resized Shape: {design_resized.shape}, Mask Shape: {scaled_mask.shape}")
return cv2.bitwise_and(design_resized, design_resized, mask=scaled_mask)
def blend_images(base, overlay, mask):
"""Blends the design onto the dress using seamless cloning."""
if overlay is None or mask is None:
raise ValueError("Overlay or mask is None, check segmentation and warping.")
base = np.array(base) # Ensure base is a NumPy array
overlay = np.array(overlay)
# Ensure overlay and base are 3-channel images
if len(overlay.shape) == 2:
overlay = cv2.cvtColor(overlay, cv2.COLOR_GRAY2BGR)
if len(base.shape) == 2:
base = cv2.cvtColor(base, cv2.COLOR_GRAY2BGR)
# Ensure mask is single-channel grayscale
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# Convert mask to uint8 if necessary
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
# Compute center of the mask for seamless cloning
center = tuple(np.array(base.shape[:2]) // 2)
return cv2.seamlessClone(overlay, base, mask, center, cv2.NORMAL_CLONE)
def apply_design(image_path, design_path, warp_scale):
"""Pipeline to segment, warp, and blend design onto dress."""
image = Image.open(image_path).convert("RGB")
design = cv2.imread(design_path)
mask = segment_dress(image)
if mask is None:
return "Segmentation Failed!"
warped_design = warp_design(design, mask, warp_scale)
blended = blend_images(np.array(image), warped_design, mask)
return Image.fromarray(blended)
def main(image, design, warp_scale):
return apply_design(image, design, warp_scale)
# Gradio UI
demo = gr.Interface(
fn=main,
inputs=[
gr.Image(type="filepath", label="Upload Dress Image"),
gr.Image(type="filepath", label="Upload Design Image"),
gr.Slider(0, 100, value=50, label="Warp Scale (%)")
],
outputs=gr.Image(label="Warped Design on Dress"),
title="AI-Powered Dress Designer",
description="Upload a dress image and a design pattern. The AI will warp and blend the design onto the dress while preserving natural folds!"
)
demo.launch()