gatesla's picture
Working on understanding and getting something to work
1fb67a9
raw
history blame
5.09 kB
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
import numpy as np
from PIL import Image
from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
# from transformers.models.detr.feature_extraction_detr import rgb_to_id
from transformers.image_transforms import rgb_to_id
TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG")
MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic"
MODEL_NAME_MASKFORMER = "facebook/maskformer-swin-large-coco"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#######
# Parameters
#######
image = TEST_IMAGE
model_name = MODEL_NAME_MASKFORMER
# Starting with MaskFormer
processor = MaskFormerImageProcessor.from_pretrained(model_name) # <class 'transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor'>
# DIR() --> ['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
# '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
# '__weakref__', '_auto_class', '_create_repo', '_get_files_timestamps', '_max_size', '_pad_image', '_preprocess', '_preprocess_image', '_preprocess_mask', '_processor_class',
# '_set_processor_class', '_upload_modified_files', 'center_crop', 'convert_segmentation_map_to_binary_masks', 'do_normalize', 'do_reduce_labels', 'do_rescale', 'do_resize',
# 'encode_inputs', 'fetch_images', 'from_dict', 'from_json_file', 'from_pretrained', 'get_image_processor_dict', 'ignore_index', 'image_mean', 'image_std', 'model_input_names',
# 'normalize', 'pad', 'post_process_instance_segmentation', 'post_process_panoptic_segmentation', 'post_process_segmentation', 'post_process_semantic_segmentation', 'preprocess',
# 'push_to_hub', 'register_for_auto_class', 'resample', 'rescale', 'rescale_factor', 'resize', 'save_pretrained', 'size', 'size_divisor', 'to_dict', 'to_json_file', 'to_json_string']
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentation'>
# DIR for model was too big
model.to(DEVICE)
# img = np.array(TEST_IMAGE)
inputs = processor(images=image, return_tensors="pt") # <class 'transformers.image_processing_utils.BatchFeature'>
# DIR() --> ['_MutableMapping__marker', '__abstractmethods__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
# '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__',
# '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__slots__', '__str__',
# '__subclasshook__', '__weakref__', '_abc_impl', '_get_is_as_tensor_fns', 'clear', 'convert_to_tensors', 'copy', 'data', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem',
# 'setdefault', 'to', 'update', 'values']
inputs.to(DEVICE)
outputs = model(**inputs) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentationOutput'>
# Each element of this class is a <class 'torch.Tensor'>
# DIR() --> ['__annotations__', '__class__', '__contains__', '__dataclass_fields__', '__dataclass_params__', '__delattr__', '__delitem__', '__dict__', '__dir__',
# '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__',
# '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__post_init__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__',
# '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'attentions', 'auxiliary_logits', 'class_queries_logits', 'clear', 'copy', 'encoder_hidden_states',
# 'encoder_last_hidden_state', 'fromkeys', 'get', 'hidden_states', 'items', 'keys', 'loss', 'masks_queries_logits', 'move_to_end', 'pixel_decoder_hidden_states',
# 'pixel_decoder_last_hidden_state', 'pop', 'popitem', 'setdefault', 'to_tuple', 'transformer_decoder_hidden_states', 'transformer_decoder_last_hidden_state',
# 'update', 'values']
results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# <class 'dict'>
# Example of
# From Tutorial (Box 79)
# def get_mask(segment_idx):
# segment = results['segments_info'][segment_idx]
# print("Visualizing mask for:", id2label[segment['label_id']])
# mask = (predicted_panoptic_seg == segment['id'])
# visual_mask = (mask * 255).astype(np.uint8)
# return Image.fromarray(visual_mask)