garyd1 commited on
Commit
b7c9c63
·
verified ·
1 Parent(s): 69fbe17

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import openai
4
+ import streamlit as st
5
+ import pandas as pd
6
+ import torch
7
+ import nltk
8
+
9
+ from langchain.chat_models import ChatOpenAI
10
+ from langchain.schema import SystemMessage, HumanMessage
11
+ from sentence_transformers import SentenceTransformer, util
12
+
13
+ # Try to load spaCy for advanced NLP processing
14
+ try:
15
+ import spacy
16
+ nlp = spacy.load("en_core_web_sm")
17
+ use_spacy = True
18
+ except Exception:
19
+ st.warning("SpaCy model not found, falling back to NLTK for tokenization.")
20
+ nltk.download("punkt")
21
+ use_spacy = False
22
+
23
+ # Load AI models
24
+ translator = ChatOpenAI(model="gpt-3.5-turbo")
25
+ model = SentenceTransformer('all-MiniLM-L6-v2')
26
+
27
+ @st.cache_data
28
+ def load_glossary_from_excel(glossary_file_bytes) -> dict:
29
+ """Load glossary from an Excel file, applying lemmatization and sorting by length."""
30
+ df = pd.read_excel(glossary_file_bytes)
31
+ glossary = {}
32
+
33
+ for _, row in df.iterrows():
34
+ if pd.notnull(row['English']) and pd.notnull(row['CanadianFrench']):
35
+ english_term = row['English'].strip().lower()
36
+ french_term = row['CanadianFrench'].strip()
37
+ doc = nlp(english_term) if use_spacy else english_term.split()
38
+ lemmatized_term = " ".join([token.lemma_ for token in doc]) if use_spacy else english_term
39
+ glossary[lemmatized_term] = french_term
40
+
41
+ return dict(sorted(glossary.items(), key=lambda item: len(item[0]), reverse=True))
42
+
43
+ @st.cache_data
44
+ def compute_glossary_embeddings_cached(glossary_items: tuple):
45
+ """Compute cached embeddings for glossary terms."""
46
+ glossary = dict(glossary_items)
47
+ glossary_terms = list(glossary.keys())
48
+ embeddings = model.encode(glossary_terms, convert_to_tensor=True)
49
+ return glossary_terms, embeddings
50
+
51
+ def translate_text(text: str) -> str:
52
+ """Uses OpenAI's GPT to translate text to Canadian French."""
53
+ messages = [
54
+ SystemMessage(content="You are a professional translator. Translate the following text to Canadian French while preserving its meaning and context."),
55
+ HumanMessage(content=text)
56
+ ]
57
+ response = translator(messages)
58
+ return response.content.strip()
59
+
60
+ def enforce_glossary(text: str, glossary: dict, threshold: float) -> str:
61
+ """Applies glossary replacements based on semantic similarity."""
62
+ glossary_items = tuple(sorted(glossary.items()))
63
+ glossary_terms, glossary_embeddings = compute_glossary_embeddings_cached(glossary_items)
64
+
65
+ sentences = nltk.tokenize.sent_tokenize(text) if not use_spacy else [sent.text for sent in nlp(text).sents]
66
+ updated_sentences = []
67
+
68
+ for sentence in sentences:
69
+ if not sentence.strip():
70
+ continue
71
+ sentence_embedding = model.encode(sentence, convert_to_tensor=True)
72
+ cos_scores = util.pytorch_cos_sim(sentence_embedding, glossary_embeddings)
73
+ max_score, max_idx = torch.max(cos_scores, dim=1)
74
+
75
+ if max_score.item() >= threshold:
76
+ term = glossary_terms[max_idx]
77
+ replacement = glossary[term]
78
+ pattern = r'\b' + re.escape(term) + r'\b'
79
+ sentence = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
80
+
81
+ updated_sentences.append(sentence.strip())
82
+
83
+ return " ".join(updated_sentences)
84
+
85
+ def validate_translation(original_text, final_text):
86
+ """Uses GPT to check if the final translation retains the original meaning."""
87
+ messages = [
88
+ SystemMessage(content="You are an AI proofreader. Compare the original and final translation. Does the final translation retain the original meaning?"),
89
+ HumanMessage(content=f"Original Text: {original_text}\nFinal Translation: {final_text}\n")
90
+ ]
91
+ response = translator(messages)
92
+ return response.content.strip()
93
+
94
+ # Streamlit UI
95
+ st.title("AI-Powered English to Canadian French Translator")
96
+ st.write("This app uses AI agents for translation, glossary enforcement, and meaning validation.")
97
+
98
+ input_text = st.text_area("Enter text to translate:")
99
+ glossary_file = st.file_uploader("Upload Glossary File (Excel)", type=["xlsx"])
100
+ threshold = st.slider("Semantic Matching Threshold", 0.5, 1.0, 0.8)
101
+
102
+ if st.button("Translate"):
103
+ if not input_text.strip():
104
+ st.error("Please enter text to translate.")
105
+ elif glossary_file is None:
106
+ st.error("Glossary file is required.")
107
+ else:
108
+ glossary = load_glossary_from_excel(glossary_file)
109
+ translated_text = translate_text(input_text)
110
+ glossary_enforced_text = enforce_glossary(translated_text, glossary, threshold)
111
+ validation_result = validate_translation(input_text, glossary_enforced_text)
112
+
113
+ st.subheader("Final Translated Text:")
114
+ st.write(glossary_enforced_text)
115
+
116
+ st.subheader("Validation Check:")
117
+ st.write(validation_result)