Spaces:
Running
Running
Create vector_store.py
Browse files- app/vector_store.py +55 -0
app/vector_store.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
import sys
|
7 |
+
|
8 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', stream=sys.stdout)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
class BaseVectorStore(ABC):
|
12 |
+
@abstractmethod
|
13 |
+
def add_documents(self, documents, embeddings):
|
14 |
+
pass
|
15 |
+
|
16 |
+
@abstractmethod
|
17 |
+
def search(self, query_vector, num_results=5):
|
18 |
+
pass
|
19 |
+
|
20 |
+
class FaissVectorStore(BaseVectorStore):
|
21 |
+
def __init__(self, dimension):
|
22 |
+
self.dimension = dimension
|
23 |
+
self.index = faiss.IndexFlatL2(dimension)
|
24 |
+
self.documents = []
|
25 |
+
self.index_path = "data/faiss_index"
|
26 |
+
os.makedirs("data", exist_ok=True)
|
27 |
+
self.load_index()
|
28 |
+
|
29 |
+
def load_index(self):
|
30 |
+
if os.path.exists(self.index_path):
|
31 |
+
try:
|
32 |
+
self.index = faiss.read_index(self.index_path)
|
33 |
+
except Exception as e:
|
34 |
+
logger.error(f"Error loading FAISS index: {e}")
|
35 |
+
|
36 |
+
def save_index(self):
|
37 |
+
try:
|
38 |
+
faiss.write_index(self.index, self.index_path)
|
39 |
+
except Exception as e:
|
40 |
+
logger.error(f"Error saving FAISS index: {e}")
|
41 |
+
|
42 |
+
def add_documents(self, documents, embeddings):
|
43 |
+
self.index.add(np.array(embeddings))
|
44 |
+
self.documents.extend(documents)
|
45 |
+
self.save_index()
|
46 |
+
|
47 |
+
def search(self, query_vector, num_results=5):
|
48 |
+
if len(self.documents) == 0:
|
49 |
+
return []
|
50 |
+
D, I = self.index.search(np.array([query_vector]), num_results)
|
51 |
+
return [self.documents[i] for i in I[0]]
|
52 |
+
|
53 |
+
def get_vector_store(config):
|
54 |
+
"""Factory function to get the appropriate vector store"""
|
55 |
+
return FaissVectorStore # Always return FAISS vector store
|