Spaces:
Running
Running
from minsearch import Index | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
import os | |
import json | |
import logging | |
import re | |
from config import Config | |
from vector_store import get_vector_store | |
import sys | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', stream=sys.stdout) | |
logger = logging.getLogger(__name__) | |
def clean_text(text): | |
if not isinstance(text, str): | |
logger.warning(f"Non-string input to clean_text: {type(text)}") | |
return "" | |
cleaned = re.sub(r'[^\w\s.,!?]', ' ', text) | |
cleaned = re.sub(r'\s+', ' ', cleaned).strip() | |
return cleaned | |
class DataProcessor: | |
def __init__(self, text_fields=["content", "title", "description"], | |
keyword_fields=["video_id", "author", "upload_date"], | |
embedding_model=None): | |
self.text_fields = text_fields | |
self.keyword_fields = keyword_fields | |
self.all_fields = text_fields + keyword_fields | |
self.text_index = Index(text_fields=text_fields, keyword_fields=keyword_fields) | |
# Use appropriate model path based on environment | |
model_path = Config.get_model_path() if embedding_model is None else embedding_model | |
self.embedding_model = SentenceTransformer(model_path) | |
self.documents = [] | |
self.embeddings = [] | |
self.index_built = False | |
self.current_index_name = None | |
# Initialize vector store | |
VectorStore = get_vector_store(Config) | |
self.vector_store = VectorStore(self.embedding_model.get_sentence_embedding_dimension()) | |
logger.info("Initialized FAISS vector store") | |
def process_transcript(self, video_id, transcript_data): | |
logger.info(f"Processing transcript for video {video_id}") | |
if not transcript_data: | |
logger.error(f"Transcript data is None for video {video_id}") | |
return None | |
if 'metadata' not in transcript_data or 'transcript' not in transcript_data: | |
logger.error(f"Invalid transcript data structure for video {video_id}") | |
logger.debug(f"Transcript data keys: {transcript_data.keys()}") | |
return None | |
metadata = transcript_data['metadata'] | |
transcript = transcript_data['transcript'] | |
logger.info(f"Number of transcript segments: {len(transcript)}") | |
full_transcript = " ".join([segment.get('text', '') for segment in transcript]) | |
logger.debug(f"Full transcript length before cleaning: {len(full_transcript)}") | |
logger.debug(f"Full transcript sample before cleaning: '{full_transcript[:500]}...'") | |
cleaned_transcript = clean_text(full_transcript) | |
logger.debug(f"Cleaned transcript length: {len(cleaned_transcript)}") | |
logger.debug(f"Cleaned transcript sample: '{cleaned_transcript[:500]}...'") | |
if not cleaned_transcript: | |
logger.warning(f"Empty cleaned transcript for video {video_id}") | |
return None | |
doc = { | |
"video_id": video_id, | |
"content": cleaned_transcript, | |
"title": clean_text(metadata.get('title', '')), | |
"description": clean_text(metadata.get('description', 'Not Available')), | |
"author": metadata.get('author', ''), | |
"upload_date": metadata.get('upload_date', ''), | |
"segment_id": f"{video_id}_full", | |
"view_count": metadata.get('view_count', 0), | |
"like_count": metadata.get('like_count', 0), | |
"comment_count": metadata.get('comment_count', 0), | |
"video_duration": metadata.get('duration', '') | |
} | |
logger.debug(f"Document created for video {video_id}") | |
for field in self.all_fields: | |
logger.debug(f"Document {field} length: {len(str(doc.get(field, '')))}") | |
logger.debug(f"Document {field} sample: '{str(doc.get(field, ''))[:100]}...'") | |
self.documents.append(doc) | |
embedding = self.embedding_model.encode(cleaned_transcript + " " + metadata.get('title', '')) | |
self.embeddings.append(embedding) | |
logger.info(f"Processed transcript for video {video_id}") | |
# Return a dictionary with the processed content and other relevant information | |
return { | |
'content': cleaned_transcript, | |
'metadata': metadata, | |
'index_name': f"video_{video_id}_{self.embedding_model.get_sentence_embedding_dimension()}" | |
} | |
def build_index(self, index_name): | |
if not self.documents: | |
logger.error("No documents to index") | |
return None | |
logger.info(f"Building index with {len(self.documents)} documents") | |
# Fields to include in the fit function | |
index_fields = self.text_fields + self.keyword_fields | |
# Create a list of dictionaries with only the fields we want to index | |
docs_to_index = [] | |
for doc in self.documents: | |
indexed_doc = {field: doc.get(field, '') for field in index_fields} | |
if all(indexed_doc.values()): # Check if all required fields have values | |
docs_to_index.append(indexed_doc) | |
else: | |
missing_fields = [field for field, value in indexed_doc.items() if not value] | |
logger.warning(f"Document with video_id {doc.get('video_id', 'unknown')} is missing values for fields: {missing_fields}") | |
if not docs_to_index: | |
logger.error("No valid documents to index") | |
return None | |
logger.info(f"Number of valid documents to index: {len(docs_to_index)}") | |
# Log the structure of the first document to be indexed | |
logger.debug("Structure of the first document to be indexed:") | |
logger.debug(json.dumps(docs_to_index[0], indent=2)) | |
try: | |
logger.info("Fitting text index") | |
self.text_index.fit(docs_to_index) | |
self.index_built = True | |
logger.info("Text index built successfully") | |
except Exception as e: | |
logger.error(f"Error building text index: {str(e)}") | |
raise | |
try: | |
if not self.es.indices.exists(index=index_name): | |
self.es.indices.create(index=index_name, body={ | |
"mappings": { | |
"properties": { | |
"embedding": {"type": "dense_vector", "dims": len(self.embeddings[0]), "index": True, "similarity": "cosine"}, | |
"content": {"type": "text"}, | |
"title": {"type": "text"}, | |
"description": {"type": "text"}, | |
"video_id": {"type": "keyword"}, | |
"author": {"type": "keyword"}, | |
"upload_date": {"type": "date"}, | |
"segment_id": {"type": "keyword"}, | |
"view_count": {"type": "integer"}, | |
"like_count": {"type": "integer"}, | |
"comment_count": {"type": "integer"}, | |
"video_duration": {"type": "text"} | |
} | |
} | |
}) | |
logger.info(f"Created Elasticsearch index: {index_name}") | |
for doc, embedding in zip(self.documents, self.embeddings): | |
doc_with_embedding = doc.copy() | |
doc_with_embedding['embedding'] = embedding.tolist() | |
self.es.index(index=index_name, body=doc_with_embedding, id=doc['segment_id']) | |
logger.info(f"Successfully indexed {len(self.documents)} documents in Elasticsearch") | |
self.current_index_name = index_name | |
return index_name | |
except Exception as e: | |
logger.error(f"Error building Elasticsearch index: {str(e)}") | |
raise | |
def compute_rrf(self, rank, k=60): | |
return 1 / (k + rank) | |
def hybrid_search(self, query, index_name, num_results=5): | |
if not index_name: | |
logger.error("No index name provided for hybrid search.") | |
raise ValueError("No index name provided for hybrid search.") | |
vector = self.embedding_model.encode(query) | |
knn_query = { | |
"field": "embedding", | |
"query_vector": vector.tolist(), | |
"k": 10, | |
"num_candidates": 100 | |
} | |
keyword_query = { | |
"multi_match": { | |
"query": query, | |
"fields": self.text_fields | |
} | |
} | |
try: | |
knn_results = self.es.search( | |
index=index_name, | |
body={ | |
"knn": knn_query, | |
"size": 10 | |
} | |
)['hits']['hits'] | |
keyword_results = self.es.search( | |
index=index_name, | |
body={ | |
"query": keyword_query, | |
"size": 10 | |
} | |
)['hits']['hits'] | |
rrf_scores = {} | |
for rank, hit in enumerate(knn_results): | |
doc_id = hit['_id'] | |
rrf_scores[doc_id] = self.compute_rrf(rank + 1) | |
for rank, hit in enumerate(keyword_results): | |
doc_id = hit['_id'] | |
if doc_id in rrf_scores: | |
rrf_scores[doc_id] += self.compute_rrf(rank + 1) | |
else: | |
rrf_scores[doc_id] = self.compute_rrf(rank + 1) | |
reranked_docs = sorted(rrf_scores.items(), key=lambda x: x[1], reverse=True) | |
final_results = [] | |
for doc_id, score in reranked_docs[:num_results]: | |
doc = self.es.get(index=index_name, id=doc_id) | |
final_results.append(doc['_source']) | |
return final_results | |
except Exception as e: | |
logger.error(f"Error in hybrid search: {str(e)}") | |
raise | |
def search(self, query, filter_dict={}, boost_dict={}, num_results=10, method='hybrid', index_name=None): | |
if not index_name: | |
logger.error("No index name provided for search.") | |
raise ValueError("No index name provided for search.") | |
if not self.es.indices.exists(index=index_name): | |
logger.error(f"Index {index_name} does not exist.") | |
raise ValueError(f"Index {index_name} does not exist.") | |
logger.info(f"Performing {method} search for query: {query} in index: {index_name}") | |
try: | |
if method == 'text': | |
return self.text_search(query, filter_dict, boost_dict, num_results, index_name) | |
elif method == 'embedding': | |
return self.embedding_search(query, num_results, index_name) | |
else: # hybrid search | |
return self.hybrid_search(query, index_name, num_results) | |
except Exception as e: | |
logger.error(f"Error in search method {method}: {str(e)}") | |
raise | |
def text_search(self, query, filter_dict={}, boost_dict={}, num_results=10, index_name=None): | |
if not index_name: | |
logger.error("No index name provided for text search.") | |
raise ValueError("No index name provided for text search.") | |
try: | |
search_body = { | |
"query": { | |
"multi_match": { | |
"query": query, | |
"fields": self.text_fields | |
} | |
}, | |
"size": num_results | |
} | |
response = self.es.search(index=index_name, body=search_body) | |
return [hit['_source'] for hit in response['hits']['hits']] | |
except Exception as e: | |
logger.error(f"Error in text search: {str(e)}") | |
raise | |
def embedding_search(self, query, num_results=10, index_name=None): | |
if not index_name: | |
logger.error("No index name provided for embedding search.") | |
raise ValueError("No index name provided for embedding search.") | |
try: | |
query_vector = self.embedding_model.encode(query).tolist() | |
script_query = { | |
"script_score": { | |
"query": {"match_all": {}}, | |
"script": { | |
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0", | |
"params": {"query_vector": query_vector} | |
} | |
} | |
} | |
response = self.es.search( | |
index=index_name, | |
body={ | |
"size": num_results, | |
"query": script_query, | |
"_source": {"excludes": ["embedding"]} | |
} | |
) | |
return [hit['_source'] for hit in response['hits']['hits']] | |
except Exception as e: | |
logger.error(f"Error in embedding search: {str(e)}") | |
raise | |
def set_embedding_model(self, model_name): | |
self.embedding_model = SentenceTransformer(model_name) | |
logger.info(f"Embedding model set to: {model_name}") |