Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,803 Bytes
f2625cd f226f06 a677a59 523927e 4a46abc 523927e 4a46abc f226f06 4a46abc 10ad72f f2625cd 4a46abc 0ef09d3 f2625cd 10ad72f f2625cd 19b159e f2625cd 19b159e f2625cd 10ad72f 6ed7668 4a46abc 4c5e550 f2625cd 4a46abc 10ad72f 4a46abc 4c5e550 f2625cd f226f06 f2625cd f226f06 5c8703b 4a46abc 10ad72f 4c5e550 4a46abc 523927e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# Add this at the top of your script
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from data_loader import (
load_data,
CATEGORIES,
METHODOLOGY,
HEADER_CONTENT,
CARDS,
DATASETS,
SCORES,
)
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
from tabs.model_comparison import create_model_comparison_tab, compare_models
from tabs.data_exploration import create_exploration_tab, filter_and_display
def create_app():
df = load_data()
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
with gr.Blocks(
theme=gr.themes.Soft(font=[gr.themes.GoogleFont("sans-serif")])
) as app:
with gr.Tabs():
# Create tabs
lb_output, lb_plot1, lb_plot2 = create_leaderboard_tab(
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
)
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT)
exp_outputs = create_exploration_tab(df)
# Initial loads
app.load(
fn=lambda: filter_leaderboard(
df, "All", list(CATEGORIES.keys())[0], "Performance"
),
outputs=[lb_output, lb_plot1, lb_plot2],
)
app.load(
fn=lambda: compare_models(
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
),
outputs=[mc_info, mc_plot],
)
app.load(
fn=lambda: filter_and_display(
MODELS[0],
DATASETS[0],
min(SCORES),
max(SCORES),
0,
0,
0,
),
outputs=exp_outputs[:-1],
)
return app
demo = create_app()
demo.launch()
|