import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load pre-trained model and tokenizer model_name = "nlptown/bert-base-multilingual-uncased-sentiment" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def predict(text): # Tokenize input text inputs = tokenizer(text, return_tensors="pt") # Get model's prediction outputs = model(**inputs) # Get predicted class index predicted_class_idx = outputs.logits.argmax(-1).item() # Return predicted class return model.config.id2label[predicted_class_idx] iface = gr.Interface(fn=predict, inputs="text", outputs="text") iface.launch(share=True)