Spaces:
Runtime error
Runtime error
Commit
Β·
9e3a587
1
Parent(s):
a3515c7
Upload 2 files
Browse files- app (1).py +83 -0
- requirements (1).txt +7 -0
app (1).py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel, InstructBlipForConditionalGeneration
|
3 |
+
import torch
|
4 |
+
import open_clip
|
5 |
+
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
11 |
+
torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
|
12 |
+
torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
|
13 |
+
|
14 |
+
git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
15 |
+
git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco").to(device)
|
16 |
+
|
17 |
+
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
18 |
+
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
|
19 |
+
|
20 |
+
blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b-coco")
|
21 |
+
blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b-coco", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
|
22 |
+
|
23 |
+
instructblip_processor = AutoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
|
24 |
+
instructblip_model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
|
25 |
+
|
26 |
+
def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
|
27 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
28 |
+
|
29 |
+
if use_float_16:
|
30 |
+
inputs = inputs.to(torch.float16)
|
31 |
+
|
32 |
+
generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
|
33 |
+
|
34 |
+
if tokenizer is not None:
|
35 |
+
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
36 |
+
else:
|
37 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
38 |
+
|
39 |
+
return generated_caption
|
40 |
+
|
41 |
+
|
42 |
+
def generate_caption_blip2(processor, model, image, replace_token=False):
|
43 |
+
prompt = "A photo of"
|
44 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device=model.device, dtype=torch.float16)
|
45 |
+
|
46 |
+
generated_ids = model.generate(**inputs,
|
47 |
+
num_beams=5, max_length=50, min_length=1, top_p=0.9,
|
48 |
+
repetition_penalty=1.5, length_penalty=1.0, temperature=1)
|
49 |
+
if replace_token:
|
50 |
+
# TODO remove once https://github.com/huggingface/transformers/pull/24492 is merged
|
51 |
+
generated_ids[generated_ids == 0] = 2
|
52 |
+
|
53 |
+
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
54 |
+
|
55 |
+
|
56 |
+
def generate_captions(image):
|
57 |
+
caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
|
58 |
+
|
59 |
+
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
60 |
+
|
61 |
+
caption_blip2 = generate_caption_blip2(blip2_processor, blip2_model, image).strip()
|
62 |
+
|
63 |
+
caption_instructblip = generate_caption_blip2(instructblip_processor, instructblip_model, image, replace_token=True)
|
64 |
+
|
65 |
+
return caption_git_large_coco, caption_blip_large, caption_blip2, caption_instructblip
|
66 |
+
|
67 |
+
|
68 |
+
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
69 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b"), gr.outputs.Textbox(label="Caption generated by Swin Transformer with GPT-2"), ]
|
70 |
+
|
71 |
+
title = "Interactive demo: comparing image captioning models"
|
72 |
+
description = "Gradio Demo to compare GIT, BLIP, BLIP-2 and InstructBLIP, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
73 |
+
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
|
74 |
+
|
75 |
+
interface = gr.Interface(fn=generate_captions,
|
76 |
+
inputs=gr.inputs.Image(type="pil"),
|
77 |
+
outputs=outputs,
|
78 |
+
examples=examples,
|
79 |
+
title=title,
|
80 |
+
description=description,
|
81 |
+
article=article,
|
82 |
+
enable_queue=True)
|
83 |
+
interface.launch(debug=True,share = True)
|
requirements (1).txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git@main
|
2 |
+
torch
|
3 |
+
open_clip_torch
|
4 |
+
accelerate
|
5 |
+
bitsandbytes
|
6 |
+
scipy
|
7 |
+
gradio
|