|
import logging |
|
import os |
|
from json import loads |
|
from torch import load, FloatTensor |
|
from numpy import float32 |
|
import librosa |
|
|
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model): |
|
checkpoint_dict = load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict.get('iteration', None) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
except: |
|
logging.info(f"{k} is not in the checkpoint") |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
if iteration: |
|
logging.info(f"Loaded checkpoint '{checkpoint_path}' (iteration {iteration})") |
|
else: |
|
logging.info(f"Loaded checkpoint '{checkpoint_path}'") |
|
return |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, 'r', encoding='utf-8') as f: |
|
data = f.read() |
|
config = loads(data) |
|
|
|
hparams = HParams(**config) |
|
return hparams |
|
|
|
|
|
def load_audio_to_torch(full_path, target_sampling_rate): |
|
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True) |
|
return FloatTensor(audio.astype(float32)) |
|
|
|
|
|
def clean_folder(folder_path): |
|
for filename in os.listdir(folder_path): |
|
file_path = os.path.join(folder_path, filename) |
|
|
|
if os.path.isfile(file_path): |
|
os.remove(file_path) |
|
|
|
|
|
|
|
def check_is_none(s): |
|
return s is None or (isinstance(s, str) and str(s).isspace()) or str(s) == "" |
|
|
|
def save_audio(audio, path): |
|
with open(path,"wb") as f: |
|
f.write(audio) |
|
|