|
import os |
|
import sys |
|
import logging |
|
import torch |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) |
|
logger = logging |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict['iteration'] |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
elif optimizer is None and not skip_optimizer: |
|
|
|
new_opt_dict = optimizer.state_dict() |
|
new_opt_dict_params = new_opt_dict['param_groups'][0]['params'] |
|
new_opt_dict['param_groups'] = checkpoint_dict['optimizer']['param_groups'] |
|
new_opt_dict['param_groups'][0]['params'] = new_opt_dict_params |
|
optimizer.load_state_dict(new_opt_dict) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
|
|
|
|
new_state_dict[k] = saved_state_dict[k] |
|
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) |
|
except: |
|
|
|
if "ja_bert_proj" in k: |
|
v = torch.zeros_like(v) |
|
logger.warning( |
|
f"If you are using an older version of the model, you should add the parameter \"legacy\":true to the data of the model's config.json") |
|
logger.error(f"{k} is not in the checkpoint") |
|
|
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict, strict=False) |
|
else: |
|
model.load_state_dict(new_state_dict, strict=False) |
|
|
|
logger.info("Loaded checkpoint '{}' (iteration {})".format( |
|
checkpoint_path, iteration)) |
|
return model, optimizer, learning_rate, iteration |
|
|