File size: 14,009 Bytes
2ed72d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import gc
import numpy as np
import json 
import torch
import torchaudio
import os
import re

from aeiou.viz import audio_spectrogram_image
from einops import rearrange
from safetensors.torch import load_file
from torch.nn import functional as F
from torchaudio import transforms as T

from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict


model = None
sample_rate = 44100
sample_size = 524288

def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
    global model, sample_rate, sample_size
    
    if pretrained_name is not None:
        print(f"Loading pretrained model {pretrained_name}")
        model, model_config = get_pretrained_model(pretrained_name)

    elif model_config is not None and model_ckpt_path is not None:
        print(f"Creating model from config")
        model = create_model_from_config(model_config)

        print(f"Loading model checkpoint from {model_ckpt_path}")
        # Load checkpoint
        copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
        #model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))

    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    if pretransform_ckpt_path is not None:
        print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
        model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
        print(f"Done loading pretransform")

    model.to(device).eval().requires_grad_(False)

    if model_half:
        model.to(torch.float16)
        
    print(f"Done loading model")

    return model, model_config

def generate_cond_with_path(
        prompt,
        negative_prompt=None,
        seconds_start=0,
        seconds_total=30,
        latitude = 0.0,
        longitude = 0.0,
        temperature = 0.0,
        humidity = 0.0,
        wind_speed = 0.0,
        pressure = 0.0,
        minutes_of_day = 0.0,
        day_of_year = 0.0,
        cfg_scale=6.0,
        steps=250,
        preview_every=None,
        seed=-1,
        sampler_type="dpmpp-2m-sde",
        sigma_min=0.03,
        sigma_max=50,
        cfg_rescale=0.4,
        use_init=False,
        init_audio=None,
        init_noise_level=1.0,
        mask_cropfrom=None,
        mask_pastefrom=None,
        mask_pasteto=None,
        mask_maskstart=None,
        mask_maskend=None,
        mask_softnessL=None,
        mask_softnessR=None,
        mask_marination=None,
        batch_size=1,
        destination_folder=None,
        file_name=None    
    ):

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    print(f"Prompt: {prompt}")

    global preview_images
    preview_images = []
    if preview_every == 0:
        preview_every = None

    # Return fake stereo audio
    conditioning = [{"prompt": prompt, "latitude": latitude, "longitude": longitude, "temperature": temperature, "humidity": humidity, "wind_speed": wind_speed, "pressure": pressure, "minutes_of_day": minutes_of_day,"day_of_year": day_of_year, "seconds_start":seconds_start, "seconds_total": seconds_total }] * batch_size

    if negative_prompt:
        negative_conditioning = [{"prompt": negative_prompt, "latitude": latitude, "longitude": longitude, "temperature": temperature, "humidity": humidity, "wind_speed": wind_speed, "pressure": pressure, "minutes_of_day": minutes_of_day,"day_of_year": day_of_year, "seconds_start":seconds_start, "seconds_total": seconds_total}] * batch_size
    else:
        negative_conditioning = None
        
    #Get the device from the model
    device = next(model.parameters()).device

    seed = int(seed)

    if not use_init:
        init_audio = None
    
    input_sample_size = sample_size

    if init_audio is not None:
        in_sr, init_audio = init_audio
        # Turn into torch tensor, converting from int16 to float32
        init_audio = torch.from_numpy(init_audio).float().div(32767)
        
        if init_audio.dim() == 1:
            init_audio = init_audio.unsqueeze(0) # [1, n]
        elif init_audio.dim() == 2:
            init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]

        if in_sr != sample_rate:
            resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
            init_audio = resample_tf(init_audio)

        audio_length = init_audio.shape[-1]

        if audio_length > sample_size:

            input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length

        init_audio = (sample_rate, init_audio)

    def progress_callback(callback_info):
        global preview_images
        denoised = callback_info["denoised"]
        current_step = callback_info["i"]
        sigma = callback_info["sigma"]

        if (current_step - 1) % preview_every == 0:
            if model.pretransform is not None:
                denoised = model.pretransform.decode(denoised)
            denoised = rearrange(denoised, "b d n -> d (b n)")
            denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
            audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
            preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))

    # If inpainting, send mask args
    # This will definitely change in the future
    if mask_cropfrom is not None: 
        mask_args = {
            "cropfrom": mask_cropfrom,
            "pastefrom": mask_pastefrom,
            "pasteto": mask_pasteto,
            "maskstart": mask_maskstart,
            "maskend": mask_maskend,
            "softnessL": mask_softnessL,
            "softnessR": mask_softnessR,
            "marination": mask_marination,
        }
    else:
        mask_args = None 

    # Do the audio generation
    audio = generate_diffusion_cond(
        model, 
        conditioning=conditioning,
        negative_conditioning=negative_conditioning,
        steps=steps,
        cfg_scale=cfg_scale,
        batch_size=batch_size,
        sample_size=input_sample_size,
        sample_rate=sample_rate,
        seed=seed,
        device=device,
        sampler_type=sampler_type,
        sigma_min=sigma_min,
        sigma_max=sigma_max,
        init_audio=init_audio,
        init_noise_level=init_noise_level,
        mask_args = mask_args,
        callback = progress_callback if preview_every is not None else None,
        scale_phi = cfg_rescale
    )

    # Convert to WAV file
    audio = rearrange(audio, "b d n -> d (b n)")
    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    #save to the desired folder with the required filename and add the .wav extension
    
    if destination_folder is not None and file_name is not None:
        torchaudio.save(f"{destination_folder}/{file_name}.wav", audio, sample_rate)
        
        

    # Let's look at a nice spectrogram too
    # audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)

    # return ("output.wav", [audio_spectrogram, *preview_images])



def generate_lm(
        temperature=1.0,
        top_p=0.95,
        top_k=0,    
        batch_size=1,
        ):
    
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    #Get the device from the model
    device = next(model.parameters()).device

    audio = model.generate_audio(
        batch_size=batch_size,
        max_gen_len = sample_size//model.pretransform.downsampling_ratio,
        conditioning=None,
        temp=temperature,
        top_p=top_p,
        top_k=top_k,
        use_cache=True
    )

    audio = rearrange(audio, "b d n -> d (b n)")

    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    torchaudio.save("output.wav", audio, sample_rate)

    audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)

    return ("output.wav", [audio_spectrogram])




def autoencoder_process(audio, latent_noise, n_quantizers):
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    #Get the device from the model
    device = next(model.parameters()).device

    in_sr, audio = audio

    audio = torch.from_numpy(audio).float().div(32767).to(device)

    if audio.dim() == 1:
        audio = audio.unsqueeze(0)
    else:
        audio = audio.transpose(0, 1)

    audio = model.preprocess_audio_for_encoder(audio, in_sr)
    # Note: If you need to do chunked encoding, to reduce VRAM, 
    # then add these arguments to encode_audio and decode_audio: chunked=True, overlap=32, chunk_size=128
    # To turn it off, do chunked=False
    # Optimal overlap and chunk_size values will depend on the model. 
    # See encode_audio & decode_audio in autoencoders.py for more info
    # Get dtype of model
    dtype = next(model.parameters()).dtype

    audio = audio.to(dtype)

    if n_quantizers > 0:
        latents = model.encode_audio(audio, chunked=False, n_quantizers=n_quantizers)
    else:
        latents = model.encode_audio(audio, chunked=False)

    if latent_noise > 0:
        latents = latents + torch.randn_like(latents) * latent_noise

    audio = model.decode_audio(latents, chunked=False)

    audio = rearrange(audio, "b d n -> d (b n)")

    audio = audio.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    torchaudio.save("output.wav", audio, sample_rate)

    return "output.wav"

def load_and_generate(model_path, json_dir, output_dir):
    """Load JSON files and generate audio for each set of conditions."""
    # List all files in the json_dir
    files = os.listdir(json_dir)
    
    # Filter for JSON files
    json_files = [file for file in files if file.endswith('.json')]
    
    if not json_files:
        print(f"No JSON files found in {json_dir}. Please check the directory path and file permissions.")
        return

    for json_filename in json_files:
        json_file_path = os.path.join(json_dir, json_filename)
        
        try:
            with open(json_file_path, 'r') as file:
                data = json.load(file)
        except Exception as e:
            print(f"Failed to read or parse {json_file_path}: {e}")
            continue
        
        # Print the JSON path
        print(json_file_path)
        
        # Extract conditions from JSON
        conditions = {
            'birdSpecies': data['birdSpecies'],
            'latitude': data['coord']['lat'],
            'longitude': data['coord']['lon'],
            'temperature': data['main']['temp'],
            'humidity': data['main']['humidity'],
            'pressure': data['main']['pressure'],
            'wind_speed': data['wind']['speed'],
            'day_of_year': data['dayOfYear'],
            'minutes_of_day': data['minutesOfDay']
        }
        
        # Extract base filename components
        step_number = re.search(r'step=(\d+)', model_path).group(1)
        bird_species = conditions['birdSpecies'].replace(' ', '_')
        base_filename = f"{bird_species}_{os.path.splitext(json_filename)[0]}_{step_number}_cfg_scale_"
        

        
        #An array of cfg scale values to test
        cfg_scales = [1.8, 2.5, 4.0, 5.0, 12.0]
        
        # Generate audio we do this 4 times with a loop
        for scale in cfg_scales:
            generate_cond_with_path(prompt = "",
            negative_prompt="",
            seconds_start=0,
            seconds_total=22,
            latitude = conditions['latitude'],
            longitude = conditions['longitude'],
            temperature = conditions['temperature'],
            humidity = conditions['humidity'],
            wind_speed = conditions['wind_speed'],
            pressure = conditions['pressure'],
            minutes_of_day = conditions['minutes_of_day'],
            day_of_year = conditions['day_of_year'],
            cfg_scale=scale,
            steps=250,
            preview_every=None,
            seed=-1,
            sampler_type="dpmpp-2m-sde",
            sigma_min=0.03,
            sigma_max=50,
            cfg_rescale=0.4,
            use_init=False,
            init_audio=None,
            init_noise_level=1.0,
            mask_cropfrom=None,
            mask_pastefrom=None,
            mask_pasteto=None,
            mask_maskstart=None,
            mask_maskend=None,
            mask_softnessL=None,
            mask_softnessR=None,
            mask_marination=None,
            batch_size=1,
            destination_folder=output_dir,
            file_name=base_filename + str(scale))
            
            
def runTests(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False, json_dir=None, output_dir=None):
    assert (pretrained_name is not None) ^ (model_config_path is not None and ckpt_path is not None), "Must specify either pretrained name or provide a model config and checkpoint, but not both"

    if model_config_path is not None:
        # Load config from json file
        with open(model_config_path) as f:
            model_config = json.load(f)
    else:
        model_config = None

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    _, model_config = load_model(model_config, ckpt_path, pretrained_name=pretrained_name, pretransform_ckpt_path=pretransform_ckpt_path, model_half=model_half, device=device)

        # Ensure output directory exists-    os.makedirs(args.output_dir, exist_ok=True)

    # Process all JSON files and generate audio
    load_and_generate(ckpt_path, json_dir, output_dir)