Spaces:
Paused
Paused
File size: 14,009 Bytes
2ed72d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import gc
import numpy as np
import json
import torch
import torchaudio
import os
import re
from aeiou.viz import audio_spectrogram_image
from einops import rearrange
from safetensors.torch import load_file
from torch.nn import functional as F
from torchaudio import transforms as T
from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict
model = None
sample_rate = 44100
sample_size = 524288
def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
global model, sample_rate, sample_size
if pretrained_name is not None:
print(f"Loading pretrained model {pretrained_name}")
model, model_config = get_pretrained_model(pretrained_name)
elif model_config is not None and model_ckpt_path is not None:
print(f"Creating model from config")
model = create_model_from_config(model_config)
print(f"Loading model checkpoint from {model_ckpt_path}")
# Load checkpoint
copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
#model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
if pretransform_ckpt_path is not None:
print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
print(f"Done loading pretransform")
model.to(device).eval().requires_grad_(False)
if model_half:
model.to(torch.float16)
print(f"Done loading model")
return model, model_config
def generate_cond_with_path(
prompt,
negative_prompt=None,
seconds_start=0,
seconds_total=30,
latitude = 0.0,
longitude = 0.0,
temperature = 0.0,
humidity = 0.0,
wind_speed = 0.0,
pressure = 0.0,
minutes_of_day = 0.0,
day_of_year = 0.0,
cfg_scale=6.0,
steps=250,
preview_every=None,
seed=-1,
sampler_type="dpmpp-2m-sde",
sigma_min=0.03,
sigma_max=50,
cfg_rescale=0.4,
use_init=False,
init_audio=None,
init_noise_level=1.0,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1,
destination_folder=None,
file_name=None
):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print(f"Prompt: {prompt}")
global preview_images
preview_images = []
if preview_every == 0:
preview_every = None
# Return fake stereo audio
conditioning = [{"prompt": prompt, "latitude": latitude, "longitude": longitude, "temperature": temperature, "humidity": humidity, "wind_speed": wind_speed, "pressure": pressure, "minutes_of_day": minutes_of_day,"day_of_year": day_of_year, "seconds_start":seconds_start, "seconds_total": seconds_total }] * batch_size
if negative_prompt:
negative_conditioning = [{"prompt": negative_prompt, "latitude": latitude, "longitude": longitude, "temperature": temperature, "humidity": humidity, "wind_speed": wind_speed, "pressure": pressure, "minutes_of_day": minutes_of_day,"day_of_year": day_of_year, "seconds_start":seconds_start, "seconds_total": seconds_total}] * batch_size
else:
negative_conditioning = None
#Get the device from the model
device = next(model.parameters()).device
seed = int(seed)
if not use_init:
init_audio = None
input_sample_size = sample_size
if init_audio is not None:
in_sr, init_audio = init_audio
# Turn into torch tensor, converting from int16 to float32
init_audio = torch.from_numpy(init_audio).float().div(32767)
if init_audio.dim() == 1:
init_audio = init_audio.unsqueeze(0) # [1, n]
elif init_audio.dim() == 2:
init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]
if in_sr != sample_rate:
resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
init_audio = resample_tf(init_audio)
audio_length = init_audio.shape[-1]
if audio_length > sample_size:
input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
init_audio = (sample_rate, init_audio)
def progress_callback(callback_info):
global preview_images
denoised = callback_info["denoised"]
current_step = callback_info["i"]
sigma = callback_info["sigma"]
if (current_step - 1) % preview_every == 0:
if model.pretransform is not None:
denoised = model.pretransform.decode(denoised)
denoised = rearrange(denoised, "b d n -> d (b n)")
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
# If inpainting, send mask args
# This will definitely change in the future
if mask_cropfrom is not None:
mask_args = {
"cropfrom": mask_cropfrom,
"pastefrom": mask_pastefrom,
"pasteto": mask_pasteto,
"maskstart": mask_maskstart,
"maskend": mask_maskend,
"softnessL": mask_softnessL,
"softnessR": mask_softnessR,
"marination": mask_marination,
}
else:
mask_args = None
# Do the audio generation
audio = generate_diffusion_cond(
model,
conditioning=conditioning,
negative_conditioning=negative_conditioning,
steps=steps,
cfg_scale=cfg_scale,
batch_size=batch_size,
sample_size=input_sample_size,
sample_rate=sample_rate,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
mask_args = mask_args,
callback = progress_callback if preview_every is not None else None,
scale_phi = cfg_rescale
)
# Convert to WAV file
audio = rearrange(audio, "b d n -> d (b n)")
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
#save to the desired folder with the required filename and add the .wav extension
if destination_folder is not None and file_name is not None:
torchaudio.save(f"{destination_folder}/{file_name}.wav", audio, sample_rate)
# Let's look at a nice spectrogram too
# audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
# return ("output.wav", [audio_spectrogram, *preview_images])
def generate_lm(
temperature=1.0,
top_p=0.95,
top_k=0,
batch_size=1,
):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
#Get the device from the model
device = next(model.parameters()).device
audio = model.generate_audio(
batch_size=batch_size,
max_gen_len = sample_size//model.pretransform.downsampling_ratio,
conditioning=None,
temp=temperature,
top_p=top_p,
top_k=top_k,
use_cache=True
)
audio = rearrange(audio, "b d n -> d (b n)")
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save("output.wav", audio, sample_rate)
audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
return ("output.wav", [audio_spectrogram])
def autoencoder_process(audio, latent_noise, n_quantizers):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
#Get the device from the model
device = next(model.parameters()).device
in_sr, audio = audio
audio = torch.from_numpy(audio).float().div(32767).to(device)
if audio.dim() == 1:
audio = audio.unsqueeze(0)
else:
audio = audio.transpose(0, 1)
audio = model.preprocess_audio_for_encoder(audio, in_sr)
# Note: If you need to do chunked encoding, to reduce VRAM,
# then add these arguments to encode_audio and decode_audio: chunked=True, overlap=32, chunk_size=128
# To turn it off, do chunked=False
# Optimal overlap and chunk_size values will depend on the model.
# See encode_audio & decode_audio in autoencoders.py for more info
# Get dtype of model
dtype = next(model.parameters()).dtype
audio = audio.to(dtype)
if n_quantizers > 0:
latents = model.encode_audio(audio, chunked=False, n_quantizers=n_quantizers)
else:
latents = model.encode_audio(audio, chunked=False)
if latent_noise > 0:
latents = latents + torch.randn_like(latents) * latent_noise
audio = model.decode_audio(latents, chunked=False)
audio = rearrange(audio, "b d n -> d (b n)")
audio = audio.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save("output.wav", audio, sample_rate)
return "output.wav"
def load_and_generate(model_path, json_dir, output_dir):
"""Load JSON files and generate audio for each set of conditions."""
# List all files in the json_dir
files = os.listdir(json_dir)
# Filter for JSON files
json_files = [file for file in files if file.endswith('.json')]
if not json_files:
print(f"No JSON files found in {json_dir}. Please check the directory path and file permissions.")
return
for json_filename in json_files:
json_file_path = os.path.join(json_dir, json_filename)
try:
with open(json_file_path, 'r') as file:
data = json.load(file)
except Exception as e:
print(f"Failed to read or parse {json_file_path}: {e}")
continue
# Print the JSON path
print(json_file_path)
# Extract conditions from JSON
conditions = {
'birdSpecies': data['birdSpecies'],
'latitude': data['coord']['lat'],
'longitude': data['coord']['lon'],
'temperature': data['main']['temp'],
'humidity': data['main']['humidity'],
'pressure': data['main']['pressure'],
'wind_speed': data['wind']['speed'],
'day_of_year': data['dayOfYear'],
'minutes_of_day': data['minutesOfDay']
}
# Extract base filename components
step_number = re.search(r'step=(\d+)', model_path).group(1)
bird_species = conditions['birdSpecies'].replace(' ', '_')
base_filename = f"{bird_species}_{os.path.splitext(json_filename)[0]}_{step_number}_cfg_scale_"
#An array of cfg scale values to test
cfg_scales = [1.8, 2.5, 4.0, 5.0, 12.0]
# Generate audio we do this 4 times with a loop
for scale in cfg_scales:
generate_cond_with_path(prompt = "",
negative_prompt="",
seconds_start=0,
seconds_total=22,
latitude = conditions['latitude'],
longitude = conditions['longitude'],
temperature = conditions['temperature'],
humidity = conditions['humidity'],
wind_speed = conditions['wind_speed'],
pressure = conditions['pressure'],
minutes_of_day = conditions['minutes_of_day'],
day_of_year = conditions['day_of_year'],
cfg_scale=scale,
steps=250,
preview_every=None,
seed=-1,
sampler_type="dpmpp-2m-sde",
sigma_min=0.03,
sigma_max=50,
cfg_rescale=0.4,
use_init=False,
init_audio=None,
init_noise_level=1.0,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1,
destination_folder=output_dir,
file_name=base_filename + str(scale))
def runTests(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False, json_dir=None, output_dir=None):
assert (pretrained_name is not None) ^ (model_config_path is not None and ckpt_path is not None), "Must specify either pretrained name or provide a model config and checkpoint, but not both"
if model_config_path is not None:
# Load config from json file
with open(model_config_path) as f:
model_config = json.load(f)
else:
model_config = None
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_, model_config = load_model(model_config, ckpt_path, pretrained_name=pretrained_name, pretransform_ckpt_path=pretransform_ckpt_path, model_half=model_half, device=device)
# Ensure output directory exists- os.makedirs(args.output_dir, exist_ok=True)
# Process all JSON files and generate audio
load_and_generate(ckpt_path, json_dir, output_dir)
|