File size: 30,189 Bytes
2ed72d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b81127
2ed72d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
import gc
import numpy as np
import gradio as gr
import json 
import torch
import torchaudio

from aeiou.viz import audio_spectrogram_image
from einops import rearrange
from safetensors.torch import load_file
from torch.nn import functional as F
from torchaudio import transforms as T

from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict

# Define preset values
presets = {
    "Pied Currawong": {
        "latitude": -33.6467,
        "longitude": 150.3246,
        "temperature": 12.43,
        "humidity": 86,
        "wind_speed": 0.66,
        "pressure": 1013,
        "minutes_of_day": 369,
        "day_of_year": 297,
    },
    "Yellow-tailed Black Cockatoo": {
        "latitude": -32.8334,
        "longitude": 150.2001,
        "temperature": 23.23,
        "humidity": 45,
        "wind_speed": 1.37,
        "pressure": 1009,
        "minutes_of_day": 986,
        "day_of_year": 78,
    },
    "Australian Magpie": {
        "latitude": -38.522,
        "longitude": 145.3365,
        "temperature": 18.75,
        "humidity": 67,
        "wind_speed": 1.5,
        "pressure": 1023,
        "minutes_of_day": 940,
        "day_of_year": 307,
    },
    "Laughing Kookaburra": {
        "latitude": -27.2685099,
        "longitude": 152.8587437,
        "temperature": 9.02,
        "humidity": 94,
        "wind_speed": 1.5,
        "pressure": 1025,
        "minutes_of_day": 320,
        "day_of_year": 236,
    }
}

def update_sliders(preset_name):
    preset = presets[preset_name]
    return (preset["latitude"], preset["longitude"], preset["temperature"], preset["humidity"], preset["wind_speed"], preset["pressure"], preset["minutes_of_day"], preset["day_of_year"])


model = None
sample_rate = 44100
sample_size = 524288


def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
    global model, sample_rate, sample_size
    
    if pretrained_name is not None:
        print(f"Loading pretrained model {pretrained_name}")
        model, model_config = get_pretrained_model(pretrained_name)

    elif model_config is not None and model_ckpt_path is not None:
        print(f"Creating model from config")
        model = create_model_from_config(model_config)

        print(f"Loading model checkpoint from {model_ckpt_path}")
        # Load checkpoint
        copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
        #model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))

    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    if pretransform_ckpt_path is not None:
        print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
        model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
        print(f"Done loading pretransform")

    model.to(device).eval().requires_grad_(False)

    if model_half:
        model.to(torch.float16)
        
    print(f"Done loading model")

    return model, model_config

def generate_cond(
        seconds_start=0,
        seconds_total=30,
        latitude = 0.0,
        longitude = 0.0,
        temperature = 0.0,
        humidity = 0.0,
        wind_speed = 0.0,
        pressure = 0.0,
        minutes_of_day = 0.0,
        day_of_year = 0.0,
        cfg_scale=6.0,
        steps=250,
        preview_every=None,
        seed=-1,
        sampler_type="dpmpp-2m-sde",
        sigma_min=0.03,
        sigma_max=50,
        cfg_rescale=0.4,
        use_init=False,
        init_audio=None,
        init_noise_level=1.0,
        mask_cropfrom=None,
        mask_pastefrom=None,
        mask_pasteto=None,
        mask_maskstart=None,
        mask_maskend=None,
        mask_softnessL=None,
        mask_softnessR=None,
        mask_marination=None,
        batch_size=1    
    ):

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()


    global preview_images
    preview_images = []
    if preview_every == 0:
        preview_every = None

    # Return fake stereo audio
    conditioning = [{"latitude": latitude, "longitude": longitude, "temperature": temperature, "humidity": humidity, "wind_speed": wind_speed, "pressure": pressure, "minutes_of_day": minutes_of_day,"day_of_year": day_of_year, "seconds_start":seconds_start, "seconds_total": seconds_total }] * batch_size
        
    #Get the device from the model
    device = next(model.parameters()).device

    seed = int(seed)

    if not use_init:
        init_audio = None
    
    input_sample_size = sample_size

    if init_audio is not None:
        in_sr, init_audio = init_audio
        # Turn into torch tensor, converting from int16 to float32
        init_audio = torch.from_numpy(init_audio).float().div(32767)
        
        if init_audio.dim() == 1:
            init_audio = init_audio.unsqueeze(0) # [1, n]
        elif init_audio.dim() == 2:
            init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]

        if in_sr != sample_rate:
            resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
            init_audio = resample_tf(init_audio)

        audio_length = init_audio.shape[-1]

        if audio_length > sample_size:

            input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length

        init_audio = (sample_rate, init_audio)

    def progress_callback(callback_info):
        global preview_images
        denoised = callback_info["denoised"]
        current_step = callback_info["i"]
        sigma = callback_info["sigma"]

        if (current_step - 1) % preview_every == 0:
            if model.pretransform is not None:
                denoised = model.pretransform.decode(denoised)
            denoised = rearrange(denoised, "b d n -> d (b n)")
            denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
            audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
            preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))

    # If inpainting, send mask args
    # This will definitely change in the future
    if mask_cropfrom is not None: 
        mask_args = {
            "cropfrom": mask_cropfrom,
            "pastefrom": mask_pastefrom,
            "pasteto": mask_pasteto,
            "maskstart": mask_maskstart,
            "maskend": mask_maskend,
            "softnessL": mask_softnessL,
            "softnessR": mask_softnessR,
            "marination": mask_marination,
        }
    else:
        mask_args = None 

    # Do the audio generation
    audio = generate_diffusion_cond(
        model, 
        conditioning=conditioning,
        steps=steps,
        cfg_scale=cfg_scale,
        batch_size=batch_size,
        sample_size=input_sample_size,
        sample_rate=sample_rate,
        seed=seed,
        device=device,
        sampler_type=sampler_type,
        sigma_min=sigma_min,
        sigma_max=sigma_max,
        init_audio=init_audio,
        init_noise_level=init_noise_level,
        mask_args = mask_args,
        callback = progress_callback if preview_every is not None else None,
        scale_phi = cfg_rescale
    )

    # Convert to WAV file
    audio = rearrange(audio, "b d n -> d (b n)")
    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    torchaudio.save("output.wav", audio, sample_rate)

    # Let's look at a nice spectrogram too
    audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)

    return ("output.wav", [audio_spectrogram, *preview_images])

def generate_uncond(
        steps=250,
        seed=-1,
        sampler_type="dpmpp-2m-sde",
        sigma_min=0.03,
        sigma_max=50,
        use_init=False,
        init_audio=None,
        init_noise_level=1.0,
        batch_size=1,
        preview_every=None
        ):

    global preview_images

    preview_images = []

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    #Get the device from the model
    device = next(model.parameters()).device

    seed = int(seed)

    if not use_init:
        init_audio = None
    
    input_sample_size = sample_size

    if init_audio is not None:
        in_sr, init_audio = init_audio
        # Turn into torch tensor, converting from int16 to float32
        init_audio = torch.from_numpy(init_audio).float().div(32767)
        
        if init_audio.dim() == 1:
            init_audio = init_audio.unsqueeze(0) # [1, n]
        elif init_audio.dim() == 2:
            init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]

        if in_sr != sample_rate:
            resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
            init_audio = resample_tf(init_audio)

        audio_length = init_audio.shape[-1]

        if audio_length > sample_size:

            input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length

        init_audio = (sample_rate, init_audio)

    def progress_callback(callback_info):
        global preview_images
        denoised = callback_info["denoised"]
        current_step = callback_info["i"]
        sigma = callback_info["sigma"]

        if (current_step - 1) % preview_every == 0:

            if model.pretransform is not None:
                denoised = model.pretransform.decode(denoised)

            denoised = rearrange(denoised, "b d n -> d (b n)")

            denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()

            audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)

            preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))

    audio = generate_diffusion_uncond(
        model, 
        steps=steps,
        batch_size=batch_size,
        sample_size=input_sample_size,
        seed=seed,
        device=device,
        sampler_type=sampler_type,
        sigma_min=sigma_min,
        sigma_max=sigma_max,
        init_audio=init_audio,
        init_noise_level=init_noise_level,
        callback = progress_callback if preview_every is not None else None
    )

    audio = rearrange(audio, "b d n -> d (b n)")

    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    torchaudio.save("output.wav", audio, sample_rate)

    audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)

    return ("output.wav", [audio_spectrogram, *preview_images])

def generate_lm(
        temperature=1.0,
        top_p=0.95,
        top_k=0,    
        batch_size=1,
        ):
    
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    #Get the device from the model
    device = next(model.parameters()).device

    audio = model.generate_audio(
        batch_size=batch_size,
        max_gen_len = sample_size//model.pretransform.downsampling_ratio,
        conditioning=None,
        temp=temperature,
        top_p=top_p,
        top_k=top_k,
        use_cache=True
    )

    audio = rearrange(audio, "b d n -> d (b n)")

    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    torchaudio.save("output.wav", audio, sample_rate)

    audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)

    return ("output.wav", [audio_spectrogram])


def create_uncond_sampling_ui(model_config):   
    generate_button = gr.Button("Generate", variant='primary', scale=1)
    
    with gr.Row(equal_height=False):
        with gr.Column():            
            with gr.Row():
                # Steps slider
                steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")

            with gr.Accordion("Sampler params", open=False):
            
                # Seed
                seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")

            # Sampler params
                with gr.Row():
                    sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-2m-sde")
                    sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
                    sigma_max_slider = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=80, label="Sigma max")

            with gr.Accordion("Init audio", open=False):
                init_audio_checkbox = gr.Checkbox(label="Use init audio")
                init_audio_input = gr.Audio(label="Init audio")
                init_noise_level_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.01, value=0.1, label="Init noise level")

        with gr.Column():
            audio_output = gr.Audio(label="Output audio", interactive=False)
            audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False)
            send_to_init_button = gr.Button("Send to init audio", scale=1)
            send_to_init_button.click(fn=lambda audio: audio, inputs=[audio_output], outputs=[init_audio_input])
    
    generate_button.click(fn=generate_uncond, 
        inputs=[
            steps_slider, 
            seed_textbox, 
            sampler_type_dropdown, 
            sigma_min_slider, 
            sigma_max_slider,
            init_audio_checkbox,
            init_audio_input,
            init_noise_level_slider,
        ], 
        outputs=[
            audio_output, 
            audio_spectrogram_output
        ], 
        api_name="generate")
def create_conditioning_slider(min_val, max_val, default_value, label):
    """
    Create a Gradio slider for a given conditioning parameter.

    Args:
    - min_val: The minimum value for the slider.
    - max_val: The maximum value for the slider.
    - label: The label for the slider, which is displayed in the UI.

    Returns:
    - A gr.Slider object configured according to the provided parameters.
    """
    step = (max_val - min_val) / 1000
    default_val = default_value
    print(f"Creating slider for {label} with min_val={min_val}, max_val={max_val}, step={step}, default_val={default_val}")
    return gr.Slider(minimum=min_val, maximum=max_val, step=step, value=default_val, label=label)

def create_sampling_ui(model_config):
    with gr.Row():
        
        generate_button = gr.Button("Generate", variant='primary', scale=1)
    
    model_conditioning_config = model_config["model"].get("conditioning", None)

    has_seconds_start = False
    has_seconds_total = False

    if model_conditioning_config is not None:
        for conditioning_config in model_conditioning_config["configs"]:
            if conditioning_config["id"] == "seconds_start":
                has_seconds_start = True
            if conditioning_config["id"] == "seconds_total":
                has_seconds_total = True

    with gr.Row(equal_height=False):
        with gr.Column():
            with gr.Row():
                
                seconds_start_slider = gr.Slider(minimum=0, maximum=512, step=1, value=0, label="Seconds start", visible=has_seconds_start)
           
                seconds_total_slider = gr.Slider(minimum=0, maximum=22, step=1, value=sample_size//sample_rate, label="Seconds total", visible=has_seconds_total)
            
            with gr.Row():
                # Steps slider
                steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=250, label="Steps")

                # Preview Every slider
                preview_every_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Preview Every")

                # CFG scale 
                cfg_scale_slider = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, value=4.0, label="CFG scale")
                
            with gr.Accordion("Climate and location", open=True):
                preset_dropdown = gr.Dropdown(choices=list(presets.keys()), label="Select Preset")

                latitude_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "latitude"), None)
                if latitude_config:
                    latitude_slider = create_conditioning_slider(
                        min_val=latitude_config["config"]["min_val"],
                        max_val=latitude_config["config"]["max_val"],
                        default_value = -29.8913,
                        label="latitude")
                    
                longitude_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "longitude"), None)
                if longitude_config:
                    longitude_slider = create_conditioning_slider(
                        min_val=longitude_config["config"]["min_val"],
                        max_val=longitude_config["config"]["max_val"],
                        default_value=152.4951,
                        label="longitude")
                    
                temperature_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "temperature"), None)
                if temperature_config:
                    temperature_slider = create_conditioning_slider(
                        min_val=temperature_config["config"]["min_val"],
                        max_val=temperature_config["config"]["max_val"],
                        default_value=22.05,
                        label="temperature")
                    
                humidity_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "humidity"), None)
                if humidity_config:
                    humidity_slider = create_conditioning_slider(
                        min_val=humidity_config["config"]["min_val"],
                        max_val=humidity_config["config"]["max_val"],
                        default_value=88,
                        label="humidity")
                    
                wind_speed_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "wind_speed"), None)
                if wind_speed_config:
                    wind_speed_slider = create_conditioning_slider(
                        min_val=wind_speed_config["config"]["min_val"],
                        max_val=wind_speed_config["config"]["max_val"],
                        default_value=0.54,
                        label="wind_speed")
                    
                pressure_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "pressure"), None)
                if pressure_config:
                    pressure_slider = create_conditioning_slider(
                        min_val=pressure_config["config"]["min_val"],
                        max_val=pressure_config["config"]["max_val"],
                        default_value=1021,
                        label="pressure")
                    
                minutes_of_day_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "minutes_of_day"), None)
                if minutes_of_day_config:
                    minutes_of_day_slider = create_conditioning_slider(
                        min_val=minutes_of_day_config["config"]["min_val"],
                        max_val=minutes_of_day_config["config"]["max_val"],
                        default_value=1354,
                        label="minutes_of_day")
                    
                day_of_year_config = next((item for item in model_conditioning_config["configs"] if item["id"] == "day_of_year"), None)
                if day_of_year_config:
                    day_of_year_slider = create_conditioning_slider(
                        min_val=day_of_year_config["config"]["min_val"],
                        max_val=day_of_year_config["config"]["max_val"],
                        default_value=342,
                        label="Day of year")

            with gr.Accordion("Sampler params", open=False):
            
                # Seed
                seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")

                # Sampler params
                with gr.Row():
                    sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-2m-sde")
                    sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
                    sigma_max_slider = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=50, label="Sigma max")
                    cfg_rescale_slider = gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.4, label="CFG rescale amount")

            
            # Default generation tab
            with gr.Accordion("Init audio", open=False):
                init_audio_input = gr.Audio(label="Init audio")
                init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=1.0, label="Init noise level")

                inputs = [
                    seconds_start_slider, 
                    seconds_total_slider, 
                    latitude_slider,
                    longitude_slider,
                    temperature_slider,
                    humidity_slider,
                    wind_speed_slider,
                    pressure_slider,
                    minutes_of_day_slider,
                    day_of_year_slider,
                    cfg_scale_slider, 
                    steps_slider, 
                    preview_every_slider, 
                    seed_textbox, 
                    sampler_type_dropdown, 
                    sigma_min_slider, 
                    sigma_max_slider,
                    cfg_rescale_slider,
                    init_noise_level_slider
                ]

        with gr.Column():
            audio_output = gr.Audio(label="Output audio", interactive=False)
            audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False)
    
    generate_button.click(fn=generate_cond, 
        inputs=inputs,
        outputs=[
            audio_output, 
            audio_spectrogram_output
        ], 
        api_name="generate")

    preset_dropdown.change(
        fn=update_sliders,
        inputs=[preset_dropdown],
        outputs=[
            latitude_slider,
            longitude_slider,
            temperature_slider,
            humidity_slider,
            wind_speed_slider,
            pressure_slider,
            minutes_of_day_slider,
            day_of_year_slider
        ]
    )

def create_txt2audio_ui(model_config):
    with gr.Blocks() as ui:
        with gr.Tab("Generation"):
            create_sampling_ui(model_config) 
        # with gr.Tab("Inpainting"):
        #     create_sampling_ui(model_config, inpainting=True)    
    return ui

def create_diffusion_uncond_ui(model_config):
    with gr.Blocks() as ui:
        create_uncond_sampling_ui(model_config)
    
    return ui

def autoencoder_process(audio, latent_noise, n_quantizers):
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    #Get the device from the model
    device = next(model.parameters()).device

    in_sr, audio = audio

    audio = torch.from_numpy(audio).float().div(32767).to(device)

    if audio.dim() == 1:
        audio = audio.unsqueeze(0)
    else:
        audio = audio.transpose(0, 1)

    audio = model.preprocess_audio_for_encoder(audio, in_sr)
    # Note: If you need to do chunked encoding, to reduce VRAM, 
    # then add these arguments to encode_audio and decode_audio: chunked=True, overlap=32, chunk_size=128
    # To turn it off, do chunked=False
    # Optimal overlap and chunk_size values will depend on the model. 
    # See encode_audio & decode_audio in autoencoders.py for more info
    # Get dtype of model
    dtype = next(model.parameters()).dtype

    audio = audio.to(dtype)

    if n_quantizers > 0:
        latents = model.encode_audio(audio, chunked=False, n_quantizers=n_quantizers)
    else:
        latents = model.encode_audio(audio, chunked=False)

    if latent_noise > 0:
        latents = latents + torch.randn_like(latents) * latent_noise

    audio = model.decode_audio(latents, chunked=False)

    audio = rearrange(audio, "b d n -> d (b n)")

    audio = audio.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    torchaudio.save("output.wav", audio, sample_rate)

    return "output.wav"

def create_autoencoder_ui(model_config):

    is_dac_rvq = "model" in model_config and "bottleneck" in model_config["model"] and model_config["model"]["bottleneck"]["type"] in ["dac_rvq","dac_rvq_vae"]

    if is_dac_rvq:
        n_quantizers = model_config["model"]["bottleneck"]["config"]["n_codebooks"]
    else:
        n_quantizers = 0

    with gr.Blocks() as ui:
        input_audio = gr.Audio(label="Input audio")
        output_audio = gr.Audio(label="Output audio", interactive=False)
        n_quantizers_slider = gr.Slider(minimum=1, maximum=n_quantizers, step=1, value=n_quantizers, label="# quantizers", visible=is_dac_rvq)
        latent_noise_slider = gr.Slider(minimum=0.0, maximum=10.0, step=0.001, value=0.0, label="Add latent noise")
        process_button = gr.Button("Process", variant='primary', scale=1)
        process_button.click(fn=autoencoder_process, inputs=[input_audio, latent_noise_slider, n_quantizers_slider], outputs=output_audio, api_name="process")

    return ui

def diffusion_prior_process(audio, steps, sampler_type, sigma_min, sigma_max):

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    #Get the device from the model
    device = next(model.parameters()).device

    in_sr, audio = audio

    audio = torch.from_numpy(audio).float().div(32767).to(device)
    
    if audio.dim() == 1:
        audio = audio.unsqueeze(0) # [1, n]
    elif audio.dim() == 2:
        audio = audio.transpose(0, 1) # [n, 2] -> [2, n]

    audio = audio.unsqueeze(0)

    audio = model.stereoize(audio, in_sr, steps, sampler_kwargs={"sampler_type": sampler_type, "sigma_min": sigma_min, "sigma_max": sigma_max})

    audio = rearrange(audio, "b d n -> d (b n)")

    audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

    torchaudio.save("output.wav", audio, sample_rate)

    return "output.wav"

def create_diffusion_prior_ui(model_config):
    with gr.Blocks() as ui:
        input_audio = gr.Audio(label="Input audio")
        output_audio = gr.Audio(label="Output audio", interactive=False)
        # Sampler params
        with gr.Row():
            steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
            sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-2m-sde")
            sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
            sigma_max_slider = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=80, label="Sigma max")
        process_button = gr.Button("Process", variant='primary', scale=1)
        process_button.click(fn=diffusion_prior_process, inputs=[input_audio, steps_slider, sampler_type_dropdown, sigma_min_slider, sigma_max_slider], outputs=output_audio, api_name="process")    

    return ui

def create_lm_ui(model_config):
    with gr.Blocks() as ui:
        output_audio = gr.Audio(label="Output audio", interactive=False)
        audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False)

        # Sampling params
        with gr.Row():
            temperature_slider = gr.Slider(minimum=0, maximum=5, step=0.01, value=1.0, label="Temperature")
            top_p_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.95, label="Top p")
            top_k_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Top k")

        generate_button = gr.Button("Generate", variant='primary', scale=1)
        generate_button.click(
            fn=generate_lm, 
            inputs=[
                temperature_slider, 
                top_p_slider, 
                top_k_slider
            ], 
            outputs=[output_audio, audio_spectrogram_output],
            api_name="generate"
        )

    return ui

def create_ui(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False):

    assert (pretrained_name is not None) ^ (model_config_path is not None and ckpt_path is not None), "Must specify either pretrained name or provide a model config and checkpoint, but not both"

    if model_config_path is not None:
        # Load config from json file
        with open(model_config_path) as f:
            model_config = json.load(f)
    else:
        model_config = None

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    _, model_config = load_model(model_config, ckpt_path, pretrained_name=pretrained_name, pretransform_ckpt_path=pretransform_ckpt_path, model_half=model_half, device=device)
    
    model_type = model_config["model_type"]

    if model_type == "diffusion_cond":
        ui = create_txt2audio_ui(model_config)
    elif model_type == "diffusion_uncond":
        ui = create_diffusion_uncond_ui(model_config)
    elif model_type == "autoencoder" or model_type == "diffusion_autoencoder":
        ui = create_autoencoder_ui(model_config)
    elif model_type == "diffusion_prior":
        ui = create_diffusion_prior_ui(model_config)
    elif model_type == "lm":
        ui = create_lm_ui(model_config)
        
    return ui