Spaces:
Runtime error
Runtime error
File size: 17,974 Bytes
3389ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import os
import math
import tempfile
import warnings
import streamlit as st
import pandas as pd
import torch
import plotly.express as px
from torch.optim import AdamW
from torch.optim.lr_scheduler import OneCycleLR
from transformers import (
EarlyStoppingCallback,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.integrations import INTEGRATION_TO_CALLBACK
from tsfm_public import (
TimeSeriesPreprocessor,
TrackingCallback,
count_parameters,
get_datasets,
)
from tsfm_public.toolkit.get_model import get_model
from tsfm_public.toolkit.lr_finder import optimal_lr_finder
from tsfm_public.toolkit.visualization import plot_predictions
# For M4 Hourly Example
from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction
# Suppress warnings and set a reproducible seed
warnings.filterwarnings("ignore")
SEED = 42
set_seed(SEED)
# Default model parameters and output directory
TTM_MODEL_PATH = "ibm-granite/granite-timeseries-ttm-r2"
DEFAULT_CONTEXT_LENGTH = 512
DEFAULT_PREDICTION_LENGTH = 96
OUT_DIR = "dashboard_outputs"
os.makedirs(OUT_DIR, exist_ok=True)
# --------------------------
# Helper: Interactive Plot
def interactive_plot(actual, forecast, title="Forecast vs Actual"):
df = pd.DataFrame(
{"Time": range(len(actual)), "Actual": actual, "Forecast": forecast}
)
fig = px.line(df, x="Time", y=["Actual", "Forecast"], title=title)
return fig
# --------------------------
# Mode 1: Zero-shot Evaluation
def run_zero_shot_forecasting(
data,
context_length,
prediction_length,
batch_size,
selected_target_columns,
selected_conditional_columns,
rolling_forecast_extension,
selected_forecast_index,
):
st.write("### Preparing Data for Forecasting")
timestamp_column = "date"
id_columns = [] # Modify if needed.
# Use selected target columns; default to all columns (except "date") if not provided.
if not selected_target_columns:
target_columns = [col for col in data.columns if col != timestamp_column]
else:
target_columns = selected_target_columns
# Incorporate exogenous/control columns.
conditional_columns = selected_conditional_columns
# Define column specifiers (if your preprocessor supports static columns, add here)
column_specifiers = {
"timestamp_column": timestamp_column,
"id_columns": id_columns,
"target_columns": target_columns,
"control_columns": conditional_columns,
}
n = len(data)
split_config = {
"train": [0, int(n * 0.7)],
"valid": [int(n * 0.7), int(n * 0.8)],
"test": [int(n * 0.8), n],
}
tsp = TimeSeriesPreprocessor(
**column_specifiers,
context_length=context_length,
prediction_length=prediction_length,
scaling=True,
encode_categorical=False,
scaler_type="standard",
)
dset_train, dset_valid, dset_test = get_datasets(tsp, data, split_config)
st.write("Data split into train, validation, and test sets.")
st.write("### Loading the Pre-trained TTM Model")
model = get_model(
TTM_MODEL_PATH,
context_length=context_length,
prediction_length=prediction_length,
)
temp_dir = tempfile.mkdtemp()
training_args = TrainingArguments(
output_dir=temp_dir,
per_device_eval_batch_size=batch_size,
seed=SEED,
report_to="none",
)
trainer = Trainer(model=model, args=training_args)
st.write("### Running Zero-shot Evaluation")
st.info("Evaluating on the test set...")
eval_output = trainer.evaluate(dset_test)
st.write("**Zero-shot Evaluation Metrics:**")
st.json(eval_output)
st.write("### Generating Forecast Predictions")
predictions_dict = trainer.predict(dset_test)
try:
predictions_np = predictions_dict.predictions[0]
except Exception as e:
st.error("Error extracting predictions: " + str(e))
return
st.write("Predictions shape:", predictions_np.shape)
if rolling_forecast_extension > 0:
st.write(
f"### Rolling Forecast Extension: {rolling_forecast_extension} extra steps"
)
st.info("Rolling forecast logic can be implemented here.")
# Interactive plot for a selected forecast index.
idx = selected_forecast_index
try:
# This example assumes dset_test[idx] is a dict with a "target" key; adjust as needed.
actual = (
dset_test[idx]["target"]
if isinstance(dset_test[idx], dict)
else dset_test[idx][0]
)
except Exception:
actual = predictions_np[idx] # Fallback if actual is not available.
fig = interactive_plot(
actual, predictions_np[idx], title=f"Forecast vs Actual for index {idx}"
)
st.plotly_chart(fig)
# Static plots (generated via plot_predictions)
plot_dir = os.path.join(OUT_DIR, "zero_shot_plots")
os.makedirs(plot_dir, exist_ok=True)
try:
plot_predictions(
model=trainer.model,
dset=dset_test,
plot_dir=plot_dir,
plot_prefix="test_zeroshot",
indices=[idx],
channel=0,
)
except Exception as e:
st.error("Error during static plotting: " + str(e))
return
for file in os.listdir(plot_dir):
if file.endswith(".png"):
st.image(os.path.join(plot_dir, file), caption=file)
# --------------------------
# Mode 2: Channel-Mix Finetuning Example
def run_channel_mix_finetuning():
st.write("## Channel-Mix Finetuning Example (Bike Sharing Data)")
# Load bike sharing dataset
target_dataset = "bike_sharing"
DATA_ROOT_PATH = (
"https://raw.githubusercontent.com/blobibob/bike-sharing-dataset/main/hour.csv"
)
timestamp_column = "dteday"
id_columns = []
try:
data = pd.read_csv(DATA_ROOT_PATH, parse_dates=[timestamp_column])
except Exception as e:
st.error("Error loading bike sharing dataset: " + str(e))
return
data[timestamp_column] = pd.to_datetime(data[timestamp_column])
# Adjust timestamps (to add hourly information)
data[timestamp_column] = data[timestamp_column] + pd.to_timedelta(
data.groupby(data[timestamp_column].dt.date).cumcount(), unit="h"
)
st.write("### Bike Sharing Data Preview")
st.dataframe(data.head())
# Define columns: targets and conditional (exogenous) channels
column_specifiers = {
"timestamp_column": timestamp_column,
"id_columns": id_columns,
"target_columns": ["casual", "registered", "cnt"],
"conditional_columns": [
"season",
"yr",
"mnth",
"holiday",
"weekday",
"workingday",
"weathersit",
"temp",
"atemp",
"hum",
"windspeed",
],
}
n = len(data)
split_config = {
"train": [0, int(n * 0.5)],
"valid": [int(n * 0.5), int(n * 0.75)],
"test": [int(n * 0.75), n],
}
context_length = 512
forecast_length = 96
tsp = TimeSeriesPreprocessor(
**column_specifiers,
context_length=context_length,
prediction_length=forecast_length,
scaling=True,
encode_categorical=False,
scaler_type="standard",
)
train_dataset, valid_dataset, test_dataset = get_datasets(tsp, data, split_config)
st.write("Data split completed.")
# For channel-mix finetuning, we use TTM-R1 (as per provided script)
TTM_MODEL_PATH_CM = "ibm-granite/granite-timeseries-ttm-r1"
finetune_forecast_model = get_model(
TTM_MODEL_PATH_CM,
context_length=context_length,
prediction_length=forecast_length,
num_input_channels=tsp.num_input_channels,
decoder_mode="mix_channel",
prediction_channel_indices=tsp.prediction_channel_indices,
)
st.write(
"Number of params before freezing backbone:",
count_parameters(finetune_forecast_model),
)
for param in finetune_forecast_model.backbone.parameters():
param.requires_grad = False
st.write(
"Number of params after freezing backbone:",
count_parameters(finetune_forecast_model),
)
num_epochs = 50
batch_size = 64
learning_rate = 0.001
optimizer = AdamW(finetune_forecast_model.parameters(), lr=learning_rate)
scheduler = OneCycleLR(
optimizer,
learning_rate,
epochs=num_epochs,
steps_per_epoch=math.ceil(len(train_dataset) / batch_size),
)
out_dir = os.path.join(OUT_DIR, target_dataset)
os.makedirs(out_dir, exist_ok=True)
finetune_args = TrainingArguments(
output_dir=os.path.join(out_dir, "output"),
overwrite_output_dir=True,
learning_rate=learning_rate,
num_train_epochs=num_epochs,
do_eval=True,
evaluation_strategy="epoch",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
dataloader_num_workers=8,
report_to="none",
save_strategy="epoch",
logging_strategy="epoch",
save_total_limit=1,
logging_dir=os.path.join(out_dir, "logs"),
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
seed=SEED,
)
early_stopping_callback = EarlyStoppingCallback(
early_stopping_patience=10,
early_stopping_threshold=1e-5,
)
tracking_callback = TrackingCallback()
finetune_trainer = Trainer(
model=finetune_forecast_model,
args=finetune_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
callbacks=[early_stopping_callback, tracking_callback],
optimizers=(optimizer, scheduler),
)
finetune_trainer.remove_callback(INTEGRATION_TO_CALLBACK["codecarbon"])
st.write("Starting channel-mix finetuning...")
finetune_trainer.train()
st.write("Evaluating finetuned model on test set...")
eval_output = finetune_trainer.evaluate(test_dataset)
st.write("Few-shot (channel-mix) evaluation metrics:")
st.json(eval_output)
# Plot predictions
plot_dir = os.path.join(out_dir, "channel_mix_plots")
os.makedirs(plot_dir, exist_ok=True)
try:
plot_predictions(
model=finetune_trainer.model,
dset=test_dataset,
plot_dir=plot_dir,
plot_prefix="test_channel_mix",
indices=[0],
channel=0,
)
except Exception as e:
st.error("Error plotting channel mix predictions: " + str(e))
return
for file in os.listdir(plot_dir):
if file.endswith(".png"):
st.image(os.path.join(plot_dir, file), caption=file)
# --------------------------
# Mode 3: M4 Hourly Example
def run_m4_hourly_example():
st.write("## M4 Hourly Example")
st.info("This example reproduces a simplified version of the M4 hourly evaluation.")
# For demonstration, we attempt to load an M4 hourly dataset from a URL.
# (In practice, you would need to download and prepare the dataset.)
M4_DATASET_URL = "https://raw.githubusercontent.com/IBM/TSFM-public/main/tsfm_public/notebooks/ETTh1.csv" # Placeholder URL
try:
m4_data = pd.read_csv(M4_DATASET_URL, parse_dates=["date"])
except Exception as e:
st.error("Could not load M4 hourly dataset: " + str(e))
return
st.write("### M4 Hourly Data Preview")
st.dataframe(m4_data.head())
context_length = 512
forecast_length = 48 # M4 hourly forecast horizon
timestamp_column = "date"
id_columns = []
target_columns = [col for col in m4_data.columns if col != timestamp_column]
n = len(m4_data)
split_config = {
"train": [0, int(n * 0.7)],
"valid": [int(n * 0.7), int(n * 0.85)],
"test": [int(n * 0.85), n],
}
column_specifiers = {
"timestamp_column": timestamp_column,
"id_columns": id_columns,
"target_columns": target_columns,
"control_columns": [],
}
tsp = TimeSeriesPreprocessor(
**column_specifiers,
context_length=context_length,
prediction_length=forecast_length,
scaling=True,
encode_categorical=False,
scaler_type="standard",
)
dset_train, dset_valid, dset_test = get_datasets(tsp, m4_data, split_config)
st.write("Data split completed.")
# Load model from Hugging Face TTM Model Repository (TTM-V1 for M4)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = TinyTimeMixerForPrediction.from_pretrained(
"ibm-granite/granite-timeseries-ttm-v1",
revision="main",
prediction_filter_length=forecast_length,
).to(device)
st.write("Running zero-shot evaluation on M4 hourly data...")
temp_dir = tempfile.mkdtemp()
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=temp_dir,
per_device_eval_batch_size=64,
report_to="none",
),
)
eval_output = trainer.evaluate(dset_test)
st.write("Zero-shot evaluation metrics on M4 hourly:")
st.json(eval_output)
plot_dir = os.path.join(OUT_DIR, "m4_hourly", "zero_shot")
os.makedirs(plot_dir, exist_ok=True)
try:
plot_predictions(
model=trainer.model,
dset=dset_test,
plot_dir=plot_dir,
plot_prefix="m4_zero_shot",
indices=[0],
channel=0,
)
except Exception as e:
st.error("Error plotting M4 zero-shot predictions: " + str(e))
return
for file in os.listdir(plot_dir):
if file.endswith(".png"):
st.image(os.path.join(plot_dir, file), caption=file)
st.info("Fine-tuning on M4 hourly data can be added similarly.")
# --------------------------
# Main UI
def main():
st.title("Interactive Time-Series Forecasting Dashboard")
st.markdown(
"""
This dashboard lets you run advanced forecasting experiments using the Granite-TimeSeries-TTM model.
Select one of the modes below:
- **Zero-shot Evaluation**
- **Channel-Mix Finetuning Example**
- **M4 Hourly Example**
"""
)
mode = st.selectbox(
"Select Evaluation Mode",
options=[
"Zero-shot Evaluation",
"Channel-Mix Finetuning Example",
"M4 Hourly Example",
],
)
if mode == "Zero-shot Evaluation":
# Allow user to choose dataset source
dataset_source = st.radio(
"Dataset Source", options=["Default (ETTh1)", "Upload CSV"]
)
if dataset_source == "Default (ETTh1)":
DATASET_PATH = "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv"
try:
data = pd.read_csv(DATASET_PATH, parse_dates=["date"])
except Exception as e:
st.error("Error loading default dataset.")
return
st.write("### Default Dataset Preview")
st.dataframe(data.head())
selected_target_columns = [
"HUFL",
"HULL",
"MUFL",
"MULL",
"LUFL",
"LULL",
"OT",
]
else:
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
if not uploaded_file:
st.info("Awaiting CSV file upload.")
return
data = pd.read_csv(uploaded_file, parse_dates=["date"])
st.write("### Uploaded Data Preview")
st.dataframe(data.head())
available_columns = [col for col in data.columns if col != "date"]
selected_target_columns = st.multiselect(
"Select Target Column(s)",
options=available_columns,
default=available_columns,
)
# Advanced options
available_exog = [
col
for col in data.columns
if col not in (["date"] + selected_target_columns)
]
selected_conditional_columns = st.multiselect(
"Select Exogenous/Control Columns", options=available_exog, default=[]
)
rolling_extension = st.number_input(
"Rolling Forecast Extension (Extra Steps)", value=0, min_value=0, step=1
)
forecast_index = st.slider(
"Select Forecast Index for Plotting",
min_value=0,
max_value=len(data) - 1,
value=0,
)
context_length = st.number_input(
"Context Length", value=DEFAULT_CONTEXT_LENGTH, step=64
)
prediction_length = st.number_input(
"Prediction Length", value=DEFAULT_PREDICTION_LENGTH, step=1
)
batch_size = st.number_input("Batch Size", value=64, step=1)
if st.button("Run Zero-shot Evaluation"):
with st.spinner("Running zero-shot evaluation..."):
run_zero_shot_forecasting(
data,
context_length,
prediction_length,
batch_size,
selected_target_columns,
selected_conditional_columns,
rolling_extension,
forecast_index,
)
elif mode == "Channel-Mix Finetuning Example":
if st.button("Run Channel-Mix Finetuning Example"):
with st.spinner("Running channel-mix finetuning..."):
run_channel_mix_finetuning()
elif mode == "M4 Hourly Example":
if st.button("Run M4 Hourly Example"):
with st.spinner("Running M4 hourly example..."):
run_m4_hourly_example()
if __name__ == "__main__":
main()
|